Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Towards a federated learning approach for branched wired networks prognosis

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Instrumentation Intelligente Distribuée et Embarquée (CEA, LIST) (LIIDE (CEA, LIST)); Département d'instrumentation Numérique (CEA, LIST) (DIN (CEA, LIST)); Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)); Direction de Recherche Technologique (CEA) (DRT (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay; Laboratoire Fiabilité et Intégration de Capteurs (CEA, LIST) (LFIC (CEA, LIST)); Département Métrologie Instrumentation & Information (CEA, LIST) (DM2I (CEA, LIST)); Données et algorithmes pour une ville intelligente et durable - DAVID (DAVID); Université de Versailles Saint-Quentin-en-Yvelines (UVSQ); Université Paris-Saclay
    • بيانات النشر:
      HAL CCSD
      IEEE
    • الموضوع:
      2023
    • Collection:
      Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Cable prognosis approaches are necessary to monitor the health state of branched wired networks. Physical failure models are often applied first as a means of monitoring, but their complex production is limiting. To address this limitation, data-driven ones are among the most suitable approaches. This is because sensors can provide a significant amount of condition monitoring data that can be used to estimate the remaining useful life of wired networks. This paper explores the uses of machine learning and distributed reflectometry sensors in establishing the guidelines for the implementation of a wired network prognosisstrategy. After realizing a reflectometry diagnosis, the acquired signals are processed to extract features that are representative of cable degradation. Then, machine learning models are usedto forecast the evolution of the features for the purpose of quantifying the future global degradation state of the wired network. Finally, the remaining useful life of the wired networkis estimated with this quantification and an end-of-life threshold. The next step of this project is to test the efficiency of the strategy proposed here, proving the suitability of guidelines basedon data-driven models, as well as the practicality of developing a federated learning solution that addresses data quantity and privacy issues.
    • Relation:
      hal-04371679; https://hal.science/hal-04371679
    • الرقم المعرف:
      10.1109/ICCAD57653.2023.10152421
    • Rights:
      http://creativecommons.org/licenses/by-sa/
    • الرقم المعرف:
      edsbas.EDF24E83