Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Pulsatile Viscous Flows in Elliptical Vessels and Annuli: Solution to the Inverse Problem, with Application to Blood and Cerebrospinal Fluid Flow

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2012
    • Collection:
      ArXiv.org (Cornell University Library)
    • نبذة مختصرة :
      We consider the fully-developed flow of an incompressible Newtonian fluid in a cylindrical vessel with elliptical cross-section (both an ellipse and the annulus between two confocal ellipses). In particular, we address an inverse problem, namely to compute the velocity field associated with a given, time-periodic flow rate. This is motivated by the fact that flow rate is the main physical quantity which can be actually measured in many practical situations. We propose a novel numerical strategy, which is nonetheless grounded on several analytical relations. The proposed method leads to the solution of some simple ordinary differential systems. It holds promise to be more amenable to implementation than previous approaches, which are substantially based on the challenging computation of Mathieu functions. Some numerical results are reported, based on measured data for human blood flow in the internal carotid artery, and cerebrospinal fluid (CSF) flow in the upper cervical region of the human spine. As expected, computational efficiency is the main asset of our solution: a speed-up factor over 10^3 was obtained, compared to more elaborate numerical approaches. The main goal of the present study is to provide an improved source of initial/boundary data for more ambitious numerical approaches, as well as a benchmark solution for pulsatile flows in elliptical sections with given flow rate. The proposed method can be effectively applied to bio-fluid dynamics investigations (possibly addressing key aspects of relevant diseases), to biomedical applications (including targeted drug delivery and energy harvesting for implantable devices), up to longer-term medical microrobotics applications. ; Comment: 19 pages, 6 figures
    • Relation:
      http://arxiv.org/abs/1212.6410
    • الرقم المعرف:
      edsbas.EDDB33B1