Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Construction of laccase based electrochemical biosensors for detection of clonazepam ; Construcción de biosensores electroquímicos basados en lacasa para la detección de clonazepam

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Osma Cruz, Johann Faccelo; Sotelo Briceño, Diana Camila
    • بيانات النشر:
      Universidad de los Andes
      Ingeniería Electrónica
      Facultad de Ingeniería
      Departamento de Ingeniería Eléctrica y Electrónica
    • الموضوع:
      2024
    • Collection:
      Universidad de los Andes Colombia: Séneca
    • نبذة مختصرة :
      Pharmaceutical industry waste and wastewater are becoming a very huge pollution problem more and more, not only because of the lack of water treatment methods but also by the incontrollable arrival of drugs at natural water reservoirs. Voltammetry is one of the quantification techniques used to detect those drugs. Using a potentiostate and electrochemical electrodes it is possible to quantify pharmaceutical particles in the water. Additionally, the electrodes can be functionalized to enhance their performance using enzymes acting as redox reactions catalyzers augmenting the speed of Clonazepam electrons release at 0.611V with the best sensor made. This study details the process of five Laccase based Biosensors fabrication to quantify Clonazepam in water using redox reactions, finding that is possible to fabricate sensors easily and with high reproducibility to ap-proximate the concentration of the drug dissolved with very low error. ; Los residuos y las aguas residuales de la industria farmacéutica se están convirtiendo cada vez más en un enorme problema de contaminación, no sólo por la falta de métodos de tratamiento del agua, sino también por la incontrolable llegada de fármacos a los depósitos naturales de agua. La voltamperometría es una de las técnicas de cuantificación utilizadas para detectar esos fármacos. Utilizando un potenciostato y electrodos electroquímicos es posible cuantificar partículas farmacéuticas en el agua. Además, los electrodos pueden ser funcionalizados para mejorar su rendimiento utilizando enzimas que actúan como catalizadores de reacciones redox, aumentando la velocidad liberación de electrones a 0,611V con el mejor sensor fabricado. Este estudio detalla el proceso de fabricación de cinco Biosensores basados en Lacasa para cuantificar Clonazepam en agua utilizando reacciones redox, encontrando que es posible fabricar sensores fácilmente y con alta reproducibilidad, para aproximar la concentración del fármaco disuelto con muy bajo error. ; Pregrado ; Biosensors
    • File Description:
      17 páginas; application/pdf
    • Relation:
      González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. https://doi.org/10.3390/ijerph18052532.; I. A. Duarte, P. Reis-Santos, J. Fick, H. N. Cabral, B. Duarte, and V. F. Fonseca, “Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species,” Environmental Pollution, vol. 316, p. 120531, 2023, doi: https://doi.org/10.1016/j.envpol.2022.120531.; M. S. Nin et al., “Anxiolytic effect of clonazepam in female rats: Grooming microstructure and elevated plus maze tests,” Eur J Pharmacol, vol. 684, no. 1, pp. 95–101, 2012, doi: https://doi.org/10.1016/j.ejphar.2012.03.038.; C. N. Nunes, V. E. dos Anjos, and S. P. Quináia, “Are there pharmaceutical compounds in sediments or in water? Determi-nation of the distribution coefficient of benzodiazepine drugs in aquatic environment,” Environmental Pollution, vol. 251, pp. 522–529, 2019, doi: https://doi.org/10.1016/j.envpol.2019.05.015.; V. Calisto and V. I. Esteves, “Psychiatric pharmaceuticals in the environment,” Chemosphere, vol. 77, no. 10, pp. 1257–1274, 2009, doi: https://doi.org/10.1016/j.chemosphere.2009.09.021.; Y. Chen et al., “Antidepressants as emerging contaminants: Occurrence in wastewater treatment plants and surface waters in Hangzhou, China.,” Front Public Health, vol. 10, p. 963257, 2022, doi:10.3389/fpubh.2022.963257.; C. Peña-Guzmán et al., “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature,” J Environ Manage, vol. 237, pp. 408–423, 2019, doi: https://doi.org/10.1016/j.jenvman.2019.02.100.; R. Zorzanelli and H. Editorial, “The case of chronic clonazepam use in Rio de,” vol. 8, no. 2, pp. 194–213.; Olfson M, King M, Schoenbaum M. Benzodiazepine use in the United States. JAMA Psychiatry. 2015 Feb;72(2):136-42. doi:10.1001/jamapsychiatry.2014.1763. PMID: 25517224.; J. L. Wilkinson et al., Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. U.S.A. 119, e2113947119 (2022). Doi: https://doi.org/10.1073/pnas.2113947119.; A.M. Botero-Coy et al., ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater’, Science of The Total Environment, Volume 642, 2018, Pages 842-853, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2018.06.088.; F. Randez-Gil, J. A. Daros, A. Salvador, and M. De La Guardia, “Direct derivative spectrophotometric determination of ni-trazepam and clonazepam in biological fluids,” J Pharm Biomed Anal, vol. 9, no. 7, pp. 539–545, 1991, doi: https://doi.org/10.1016/0731-7085(91)80175-9.; A. A. Salem, B. N. Barsoum, and E. L. Izake, “Spectrophotometric and fluorimetric determination of diazepam, bromazepam and clonazepam in pharmaceutical and urine samples,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 60, no. 4, pp. 771–780, 2004, doi: https://doi.org/10.1016/S1386-1425(03)00300-7.; Fatta, D., A. Achilleos, A. Nikolaou, and S. Meriç. 2007. "Analytical Methods for Tracing Pharmaceutical Residues in Water and Wastewater." TrAC Trends in Analytical Chemistry 26 (6): 515-533. https://doi.org/10.1016/j.trac.2007.02.001.; Qriouet, Zidane, Qmichou, Zineb, Bouchoutrouch, Nadia, Mahi, Hassan, Cherrah, Yahia, Sefrioui, Hassan, Analytical Methods Used for the Detection and Quantification of Benzodiazepines, Journal of Analytical Methods in Chemistry, 2019, 2035492, 11 pages, 2019. https://doi.org/10.1155/2019/2035492; Francis, Koshy, and Mathew. “Chapter 7 - Electroanalytical Techniques: A Tool for Nanomaterial Characterization.”. Sci-enceDirect 2022.; Chistian C, Segura. A LOW-COST MULTI-TECHNIQUE PORTABLE ELECTROCHEMICAL DEVICE FOR REMOTE BIO-SENSORS. Doctoral thesis 2022.; J. Xu, Y. Wang, and S. Hu, “Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review,” Microchimica Acta, vol. 184, no. 1. 2017. doi:10.1007/s00604-016-2007-0.; Juan C, Ariaas. Design and implementation of an electrochemical sensor, 2 based on a microfluidic system, to determine ac-etaminophen 3 concentrations in water. Article 2022.; E. Bakker and M. Telting-Diaz, “Electrochemical Sensors,” Anal Chem, vol. 74, no. 12, pp. 2781–2800, Jun. 2002, doi:10.1021/ac0202278.; Garima, A. Sachdev, and I. Matai, “An electrochemical sensor based on cobalt oxyhydroxide nanoflakes/reduced graphene oxide nanocomposite for detection of illicit drug-clonazepam,” Journal of Electroanalytical Chemistry, vol. 919, p. 116537, 2022, doi: https://doi.org/10.1016/j.jelechem.2022.116537.; Arregui et al. Laccases: Structure, Function, and Potential Application in Water Bioremediation 2019.; Tvorynska, Sofiia, Jiří Barek, and Bohdan Josypcuk. 2022. "Influence of Different Covalent Immobilization Protocols on Elec-troanalytical Performance of Laccase-Based Biosensors." Bioelectrochemistry 148: 108223. https://doi.org/10.1016/j.bioelechem.2022.108223.; B. Dey, T. Dutta, Laccases: Thriving the domain of bio-electrocatalysis, Bioelectrochemistry 146 (2022) 108144, https://doi.org/10.1016/j.bioelechem.2022.108144.; ChemicalBook. 2024. "3-Aminopropyltriethoxysilane." ChemicalBook. Accessed June 20, 2024. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8686147.htm.; Pal, Kunal, Allan T. Paulson, and Dérick Rousseau. 2013. "Biopolymers in Controlled-Release Delivery Systems." In Handbook of Biopolymers and Biodegradable Plastics, edited by Sina Ebnesajjad, 329-363. Plastics Design Library. William Andrew Pub-lishing. https://doi.org/10.1016/B978-1-4557-2834-3.00014-8.; ALS Japan. "Current - Potential Curve." Accessed June 20, 2024. https://www.als-japan.com/1822.html.; Clonazepam. (2021). In http://www.rochecanada.com/. Hoffmann-La Roche Limited. Retrieved June 20, 2024, from https://assets.roche.com/f/173850/x/75c73cc9d7/rivotril_pm_e.pdf; https://hdl.handle.net/1992/74568; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/
    • الدخول الالكتروني :
      https://hdl.handle.net/1992/74568
    • Rights:
      Attribution-NonCommercial-ShareAlike 4.0 International ; http://creativecommons.org/licenses/by-nc-sa/4.0/ ; info:eu-repo/semantics/openAccess ; http://purl.org/coar/access_right/c_abf2
    • الرقم المعرف:
      edsbas.EC3C75AE