نبذة مختصرة : International audience ; We consider a semi-parametric model for recurrent events. The model consists of an unknown hazard rate function, the infinite-dimensional parameter of the model, and a parametrically specified effective age function. We will present a condition on the family of effective age functions under which the profile likelihood function evaluated at the parameter vector θ, say, exceeds the profile likelihood function evaluated at the parameter vector $\tilde\theta$, say, with probability p. From this we derive a condition under which profile likelihood inference for the finite-dimensional parameter of the model leads to inconsistent estimates. Examples will be presented. In particular, we will provide an example where the profile likelihood function is monotone with probability one regardless of the true data generating process.
No Comments.