نبذة مختصرة : Teams of autonomous cooperating vehicles are wellsuited for meeting the challenges associated with mobile marine sensor networks. Swarms built using a physicomimetics approach exhibit predictable behavior – an important benefit for extended duration deployments of autonomous ocean platforms. By using a decentralized control framework, we minimize energy consumption via short-range communication and self-contained on-board data processing, all without a specified leader. We introduce the task of autonomous surface vehicle (ASV) navigation inside a bioluminescent plume to motivate future study of how the agility and scalability of our physics-based solution can benefit a mobile distributed sensor network. ; IEEE publications are available online at http://www.ieee.org/ this article should be cited as Charles (Lee) Frey, Dimitri Zarzhitsky, William M. Spears, Diana F. Spears, Christer Karlsson, Brian Ramos, Jerry C. Hamann, Edith A. Widder (2008) A Physicomimetics Control Framework for Swarms of Autonomous Surface Vehicles, Marine Technology Society of the IEEE, Oceans 2008. ; Florida Atlantic University. Harbor Branch Oceanographic Institute contribution #1755.
Relation: IEEE publications are available online at http://www.ieee.org/ this article should be cited as Charles (Lee) Frey, Dimitri Zarzhitsky, William M. Spears, Diana F. Spears, Christer Karlsson, Brian Ramos, Jerry C. Hamann, Edith A. Widder (2008) A Physicomimetics Control Framework for Swarms of Autonomous Surface Vehicles, Marine Technology Society of the IEEE, Oceans 2008.
No Comments.