Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Simple and Efficient Confidence Score for Grading Whole Slide Images

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre de Bioinformatique (CBIO); Mines Paris - PSL (École nationale supérieure des mines de Paris); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL); Cancer et génome: Bioinformatique, biostatistiques et épidémiologie d'un système complexe; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut Curie Paris -Institut National de la Santé et de la Recherche Médicale (INSERM); Hôpital Européen Georges Pompidou APHP (HEGP); Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO); Institut Curie Paris; ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2023
    • Collection:
      MINES ParisTech: Archive ouverte / Open Archive (HAL)
    • نبذة مختصرة :
      Grading precancerous lesions on whole slide images is a challenging task: the continuous space of morphological phenotypes makes clear-cut decisions between different grades often difficult, leading to low inter- and intra-rater agreements. More and more Artificial Intelligence (AI) algorithms are developed to help pathologists perform and standardize their diagnosis. However, those models can render their prediction without consideration of the ambiguity of the classes and can fail without notice which prevent their wider acceptance in a clinical context. In this paper, we propose a new score to measure the confidence of AI models in grading tasks. Our confidence score is specifically adapted to ordinal output variables, is versatile and does not require extra training or additional inferences nor particular architecture changes. Comparison to other popular techniques such as Monte Carlo Dropout and deep ensembles shows that our method provides state-of-the art results, while being simpler, more versatile and less computationally intensive. The score is also easily interpretable and consistent with real life hesitations of pathologists. We show that the score is capable of accurately identifying mispredicted slides and that accuracy for high confidence decisions is significantly higher than for low-confidence decisions (gap in AUC of 17.1% on the test set). We believe that the proposed confidence score could be leveraged by pathologists directly in their workflow and assist them on difficult tasks such as grading precancerous lesions.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2303.04604; hal-04030031; https://minesparis-psl.hal.science/hal-04030031; https://minesparis-psl.hal.science/hal-04030031/document; https://minesparis-psl.hal.science/hal-04030031/file/2303.04604.pdf; ARXIV: 2303.04604
    • الدخول الالكتروني :
      https://minesparis-psl.hal.science/hal-04030031
      https://minesparis-psl.hal.science/hal-04030031/document
      https://minesparis-psl.hal.science/hal-04030031/file/2303.04604.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E9FE2620