Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Correlative multi-spectroscopic and microscopic analyses for investigation of UV-C QDs bimodal emission

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI); Direction de Recherche Technologique (CEA) (DRT (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA); Nanophysique et Semiconducteurs (NPSC); PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS); Institut de Recherche Interdisciplinaire de Grenoble (IRIG); Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA); Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA); Modélisation et Exploration des Matériaux (MEM); Nanophysique et Semiconducteurs (NEEL - NPSC); Institut Néel (NEEL); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA); Groupe de physique des matériaux (GPM); Université de Rouen Normandie (UNIROUEN); Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie); Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA); Université de Caen Normandie (UNICAEN); Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN); Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN); Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie); Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN); Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN); Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS); Normandie Université (NU)
    • بيانات النشر:
      HAL CCSD
      EDP Sciences
    • الموضوع:
      2024
    • Collection:
      Normandie Université: HAL
    • نبذة مختصرة :
      International audience ; Undoped, Cu and/or Y doped ZrO2 nanopowders were synthesized with Zr, Y, and Cu nitrates using a co-precipitation approach. Their structural and optical properties were examined regarding dopant content (0.1–8.0 mol.% of CuO and 3–15 mol.% of Y2O3) and calcination conditions (400 °C–1000 °C and, 1,2 or 5 h) through Raman scattering, XRD, TEM, EDS, AES, EPR, UV–vis and FTIR diffused reflectance methods. The results showed that both Cu and Y dopants promoted the appearance of additional oxygen vacancies in ZrO2 host, while the formation of tetragonal and cubic ZrO2 phases was primarily influenced by the Y content, regardless of Cu loading. The bandgap of most of the powders was observed within the 5.45–5.65 eV spectral range, while for those with high Y content it exceeded 5.8 eV. The (Cu,Y)-ZrO2 powders with 0.2 mol.% CuO and 3 mol.% Y2O3 calcined at 600 °C for 2 h demonstrated nanoscaled tetragonal grains (8–12 nm) and a significant surface area covered with dispersed CuxO species. For higher calcination temperatures, the formation of CuZr2+ EPR centers, accompanied by tetragonal-to-monoclinic phase transformation, was found. For fitting of experimental FTIR reflection spectra, theoretical models with one, five, and seven oscillators were constructed for cubic, tetragonal, and monoclinic ZrO2 phases, respectively. Comparing experimental and theoretical spectra, the parameters of various phonons were determined. It was found that the distinct position of the high-frequency FTIR reflection minimum is a unique feature for each crystalline phase. It was centered at 700–720 cm−1, 790–800 cm−1, and 820–840 cm−1 for cubic, tetragonal, and monoclinic phases, respectively, showing minimal dependence on phonon damping coefficients. Based on the complementary nature of results obtained from structural and optical methods, an approach for monitoring powder properties and predicting catalytic activity can be proposed for ZrO2–based nanopowders.
    • الرقم المعرف:
      10.1051/bioconf/202412932002
    • الدخول الالكتروني :
      https://hal.science/hal-04773075
      https://hal.science/hal-04773075v1/document
      https://hal.science/hal-04773075v1/file/bioconf_emc2024_32002.pdf
      https://doi.org/10.1051/bioconf/202412932002
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E95C07C6