Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Predictive analytics of environmental adaptability in multi-omic network models.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Springer Science and Business Media LLC
      //dx.doi.org/10.1038/srep15147
      Sci Rep
    • الموضوع:
      2015
    • Collection:
      Apollo - University of Cambridge Repository
    • نبذة مختصرة :
      Bacterial phenotypic traits and lifestyles in response to diverse environmental conditions depend on changes in the internal molecular environment. However, predicting bacterial adaptability is still difficult outside of laboratory controlled conditions. Many molecular levels can contribute to the adaptation to a changing environment: pathway structure, codon usage, metabolism. To measure adaptability to changing environmental conditions and over time, we develop a multi-omic model of Escherichia coli that accounts for metabolism, gene expression and codon usage at both transcription and translation levels. After the integration of multiple omics into the model, we propose a multiobjective optimization algorithm to find the allowable and optimal metabolic phenotypes through concurrent maximization or minimization of multiple metabolic markers. In the condition space, we propose Pareto hypervolume and spectral analysis as estimators of short term multi-omic (transcriptomic and metabolic) evolution, thus enabling comparative analysis of metabolic conditions. We therefore compare, evaluate and cluster different experimental conditions, models and bacterial strains according to their metabolic response in a multidimensional objective space, rather than in the original space of microarray data. We finally validate our methods on a phenomics dataset of growth conditions. Our framework, named METRADE, is freely available as a MATLAB toolbox.
    • File Description:
      Electronic; application/pdf
    • Relation:
      https://www.repository.cam.ac.uk/handle/1810/284993
    • الرقم المعرف:
      10.17863/CAM.32364
    • الدخول الالكتروني :
      https://www.repository.cam.ac.uk/handle/1810/284993
      https://doi.org/10.17863/CAM.32364
    • Rights:
      Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.E86D6726