Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

multipers: Multiparameter Persistence for Machine Learning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Understanding the Shape of Data (DATASHAPE); Inria Sophia Antipolis - Méditerranée (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de l'Université Paris-Saclay; Centre Inria de Saclay; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay; Institut National de Recherche en Informatique et en Automatique (Inria); ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
    • بيانات النشر:
      CCSD
      Open Journals
    • الموضوع:
      2024
    • Collection:
      HAL Université Côte d'Azur
    • نبذة مختصرة :
      International audience ; multipers is a Python library for Topological Data Analysis, focused on Multiparameter Persistence computation and visualizations for Machine Learning. It features several efficient computational and visualization tools, with integrated, easy to use, auto-differentiable Machine Learning pipelines, that can be seamlessly interfaced with scikit-learn (Pedregosa et al., 2011) and PyTorch (Paszke et al., 2019). This library is meant to be usable for non-experts in Topological or Geometrical Machine Learning. Performance-critical functions are implemented in C++ or in Cython (Behnel et al., 2011-03/2011-04), are parallelizable with TBB (Robison, 2011), and have Python bindings and interface. It can handle a very diverse range of datasets that can be framed into a (finite) multi-filtered simplicial or cell complex, including, e.g., point clouds, graphs, time series, images, etc.
    • الرقم المعرف:
      10.21105/joss.06773
    • الدخول الالكتروني :
      https://inria.hal.science/hal-04801544
      https://inria.hal.science/hal-04801544v1/document
      https://inria.hal.science/hal-04801544v1/file/10.21105.joss.06773.pdf
      https://doi.org/10.21105/joss.06773
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E7ECC717