Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Service de néphrologie Rennes; Université de Rennes (UR)-Centre Hospitalier Universitaire de Rennes CHU Rennes = Rennes University Hospital Pontchaillou; Institut de Génétique et Développement de Rennes (IGDR); Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS); Institut de Recherche Mathématique de Rennes (IRMAR); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro); Plate-forme transcriptome; Université de Rennes (UR)
    • بيانات النشر:
      CCSD
      BioMed Central
    • الموضوع:
      2009
    • Collection:
      Archive Ouverte de l'Université Rennes (HAL)
    • نبذة مختصرة :
      International audience ; BACKGROUND: Genomic analysis will greatly benefit from considering in a global way various sources of molecular data with the related biological knowledge. It is thus of great importance to provide useful integrative approaches dedicated to ease the interpretation of microarray data. RESULTS: Here, we introduce a data-mining approach, Multiple Factor Analysis (MFA), to combine multiple data sets and to add formalized knowledge. MFA is used to jointly analyse the structure emerging from genomic and transcriptomic data sets. The common structures are underlined and graphical outputs are provided such that biological meaning becomes easily retrievable. Gene Ontology terms are used to build gene modules that are superimposed on the experimentally interpreted plots. Functional interpretations are then supported by a step-by-step sequence of graphical representations. CONCLUSION: When applied to genomic and transcriptomic data and associated Gene Ontology annotations, our method prioritize the biological processes linked to the experimental settings. Furthermore, it reduces the time and effort to analyze large amounts of 'Omics' data.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/19154582; PUBMED: 19154582
    • الرقم المعرف:
      10.1186/1471-2164-10-32
    • الدخول الالكتروني :
      https://inserm.hal.science/inserm-00365978
      https://inserm.hal.science/inserm-00365978v1/document
      https://inserm.hal.science/inserm-00365978v1/file/picrender.pdf
      https://doi.org/10.1186/1471-2164-10-32
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E7B1442F