نبذة مختصرة : In this article, a strategic planting planning method for pea crops is presented, using advanced management techniques such as the application of predictive neural networks based on historical meteorological and economic data to increase farmers' profitability. It was verified that predictions can be made with an average error of 7.7%, therefore the algorithm can be used as a decision-making tool. ; En este artículo se presenta un método planeación estratégica de siembra de cultivos de alverja empleando técnicas avanzadas de administración como lo son la aplicación de redes neuronales predictivas basadas en datos históricos meteorológicos y económicos, para aumentar la rentabilidad de los agricultores. Se pudo corroborar que es posible realizar predicciones con un error medio del 7.7%, por lo cual el algoritmo se puede emplear herramienta para la toma de decisiones.
Relation: https://revistas.ufps.edu.co/index.php/respuestas/article/view/4696/5925; J. A. Davidson, M. Krysinska-Kaczmarek, A. L. Leonforte, and L. S. McMurray, “Resistance to downy mildew (Peronospora viciae) in Australian field pea germplasm (Pisum sativum),” Australasian Plant Pathology, vol. 40, no. 6, pp. 575–582, 2011. Disponible en: https://link.springer.com/article/10.1007/s13313-011-0084-4. [2] S. M. Bhosle and R. Makandar, “Comparative proteomic analysis reveals molecular differences between incompatible and compatible interaction of Erysiphe pisi in garden pea,” Microbiological Research, vol. 248, no. March, p. 126736, 2021. Disponible en: https://www.sciencedirect.com/science/article/pii/S0944501321000422. [3] Y. H. Park et al., “Screening and characterization of endophytic fungi of Panax ginseng Meyer for biocontrol activity against ginseng pathogens,” Biological Control, vol. 91, pp. 71–81, 2015. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1049964415300177. [4] H. H. A. El-Sharkawy, M. S. Abbas, A. S. Soliman, S. A. Ibrahim, and I. A. I. El-Nady, “Synergistic effect of growth-promoting microorganisms on bio-control of Fusarium oxysporum f. sp. pisi, growth, yield, physiological and anatomical characteristics of pea plants,” Pesticide Biochemistry and Physiology, vol. 178, no. May, p. 104939, 2021. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S004835752100170X. [5] E. Barilli, J. C. Sillero, E. Prats, and D. Rubiales, “Resistance to rusts (uromyces pisi and u. viciae-fabae) in pea,” Czech Journal of Genetics and Plant Breeding, vol. 50, no. 2, pp. 135–143, 2014. Disponible en: https://cjgpb.agriculturejournals.cz/artkey/cjg-201402-0015_resistance-to-rusts-uromyces-pisi-and-u-viciae-fabae-in-pea.php. [6] J. Liang, “Multivariate linear regression method based on SPSS analysis of influencing factors of CPI during epidemic situation,” in 2020 2nd International Conference on Economic Management and Model Engineering (ICEMME), 2020, pp. 294–297. Disponible en: https://ieeexplore.ieee.org/document/9434715. [7] Z. Zhang, “Decision Trees for Objective House Price Prediction,” in 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 2021, pp. 280–283. Disponible en: https://ieeexplore.ieee.org/document/9731083. [8] Y. Liu and H. Wu, “Prediction of Road Traffic Congestion Based on Random Forest,” in 2017 10th International Symposium on Computational Intelligence and Design (ISCID), 2017, vol. 2, pp. 361–364. Disponible en: https://ieeexplore.ieee.org/document/8283291. [9] Z. Liu, Z. Dang, and J. Yu, “Stock Price Prediction Model Based on RBF-SVM Algorithm,” in 2020 International Conference on Computer Engineering and Intelligent Control (ICCEIC), 2020, pp. 124–127. Disponible en: https://ieeexplore.ieee.org/document/9361804. [10] S. Sinha and S. Tiwari, “An Improvement in Performance and Computational Cost of ANN Based Wind Speed Prediction System,” in 2019 International Conference on Communication and Electronics Systems (ICCES), 2019, pp. 542–546. Disponible en: https://ieeexplore.ieee.org/document/9002315. [11] Z. Yang, X. Peng, P. Wei, Y. Xiong, X. Xu, and J. Song, “Short-Term Wind Power Prediction Based on CEEMDAN and Parallel CNN-LSTM,” in 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), 2022, pp. 1166–1172. Disponible en: https://ieeexplore.ieee.org/document/9949917. [12] Q. Ye, X. Yang, C. Chen, and J. Wang, “River Water Quality Parameters Prediction Method Based on LSTM-RNN Model,” in 2019 Chinese Control And Decision Conference (CCDC), 2019, pp. 3024–3028. Disponible en: https://ieeexplore.ieee.org/document/8832885. [13] X. Qi, Y. Gao, Y. Li, and M. Li, “K-nearest Neighbors Regressor for Traffic Prediction of Rental Bikes,” in 2022 14th International Conference on Computer Research and Development (ICCRD), 2022, pp. 152–156. Disponible en: https://ieeexplore.ieee.org/document/9730527. [14] S. Sridhar and S. Sanagavarapu, “Analysis and Prediction of Bitcoin Price using Bernoulli RBM-based Deep Belief Networks,” in 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), 2021, pp. 1–6. Disponible en: https://ieeexplore.ieee.org/document/9548422. [15] D. Zhao and F. Chen, “A Hybrid Ensemble Model for Short-Term Traffic Flow Prediction,” in 2022 China Automation Congress (CAC), 2022, pp. 3887–3891. Disponible en: [16] C. Griesbach, A. Groll, and E. Bergherr, “Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques,” PLoS ONE, vol. 16, no. 7 July, pp. 1–17, 2021. Disponible en: https://ieeexplore.ieee.org/document/10054817. [17] IDEAM, “Consulta y descarga de datos hidrometereológicos,” 2022. [Online]. Disponible en: http://dhime.ideam.gov.co/atencionciudadano/. [18] DANE, “Estadísticas por tema - Departamento administrativo nacional de estadística,” 2022. [Online]. Disponible en: https://www.dane.gov.co/.; https://revistas.ufps.edu.co/index.php/respuestas/article/view/4696
No Comments.