Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Pros and Cons of Fault Injection Approaches for the Reliability Assessment of Deep Neural Networks

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Politecnico di Torino = Polytechnic of Turin (Polito); Test and dEpendability of microelectronic integrated SysTems (TEST); Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM); Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS); INL - Conception de Systèmes Hétérogènes (INL - CSH); Institut des Nanotechnologies de Lyon (INL); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2021
    • Collection:
      Université de Montpellier: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; In the last years, the adoption of Artificial Neural Networks (ANNs) in safety-critical applications has required an in-depth study of their reliability. For this reason, the research community has shown a growing interest in understanding the robustness of artificial computing models to hardware faults. Indeed, several recent studies have demonstrated that hardware faults induced by an external perturbation or due to silicon wear out and aging effects can significantly impact the ANN inference leading to wrong predictions. This work classifies and analyses the principal reliability assessment methodologies based on Fault Injection at different abstraction levels and with different procedures. Some of the most representative academic and industrial works proposed in the literature are described and the principal advantages, and drawbacks are highlighted.
    • Relation:
      lirmm-03435567; https://hal-lirmm.ccsd.cnrs.fr/lirmm-03435567; https://hal-lirmm.ccsd.cnrs.fr/lirmm-03435567/document; https://hal-lirmm.ccsd.cnrs.fr/lirmm-03435567/file/2021___LATS___Pros_and_Cons_of_Fault_Injection_Approaches_for_the_Reliability_Assessment_of_Deep_Neural_Networks___HAL_Version.pdf
    • الرقم المعرف:
      10.1109/LATS53581.2021.9651807
    • الدخول الالكتروني :
      https://hal-lirmm.ccsd.cnrs.fr/lirmm-03435567
      https://hal-lirmm.ccsd.cnrs.fr/lirmm-03435567/document
      https://hal-lirmm.ccsd.cnrs.fr/lirmm-03435567/file/2021___LATS___Pros_and_Cons_of_Fault_Injection_Approaches_for_the_Reliability_Assessment_of_Deep_Neural_Networks___HAL_Version.pdf
      https://doi.org/10.1109/LATS53581.2021.9651807
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E70AB4B8