Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Realizing Scalable Nano-SiO2-Aerogel-Reinforced Composite Polymer Electrolytes with High Ionic Conductivity via Rheology-Tuning UV Polymerization

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Multidisciplinary Digital Publishing Institute
    • الموضوع:
      2023
    • Collection:
      MDPI Open Access Publishing
    • الموضوع:
    • نبذة مختصرة :
      Polymer electrolytes for lithium metal batteries have aroused widespread interest because of their flexibility and excellent processability. However, the low ambient ionic conductivity and conventional fabrication process hinder their large-scale application. Herein, a novel polyethylene-oxide-based composite polymer electrolyte is designed and fabricated by introducing nano-SiO2 aerogel as an inorganic filler. The Lewis acid–base interaction between SiO2 and anions from Li salts facilitates the dissociation of Li+. Moreover, the SiO2 interacts with ether oxygen (EO) groups, which weakens the interaction between Li+ and EO groups. This synergistic effect produces more free Li+ in the electrolyte. Additionally, the facile rheology-tuning UV polymerization method achieves continuous coating and has potential for scalable fabrication. The composite polymer electrolyte exhibits high ambient ionic conductivity (0.68 mS cm−1) and mechanical properties (e.g., the elastic modulus of 150 MPa). Stable lithium plating/stripping for 1400 h in Li//Li symmetrical cells at 0.1 mA cm−2 is achieved. Furthermore, LiFePO4//Li full cells deliver superior discharge capacity (153 mAh g−1 at 0.5 C) and cycling stability (with a retention rate of 92.3% at 0.5 C after 250 cycles) at ambient temperature. This work provides a promising strategy for polymer-based lithium metal batteries.
    • File Description:
      application/pdf
    • Relation:
      Applied Chemistry; https://dx.doi.org/10.3390/molecules28020756
    • الرقم المعرف:
      10.3390/molecules28020756
    • الدخول الالكتروني :
      https://doi.org/10.3390/molecules28020756
    • Rights:
      https://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.E62F44A1