Contributors: Robotique médicale et mécanismes parallèles (LIRMM; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM); Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM); Centre Hospitalier Régional Universitaire Montpellier (CHRU Montpellier); Biologie Intégrative du Tissu Osseux (LBTO); Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM); This work was supported by the French ”Fondation pour l’Audition” (FPA RD-2017-4), the French Occitanie Region and European Council (RR19093FF FEDER found), the Labex CAMI (ANR-11-LABX0004) , ROBOTEX 2.0 (Grants ROBOTEX ANR-10-EQPX-44-01 and TIRREX ANR-21-ESRE-0015).; ANR-11-LABX-0004,CAMI,Gestes Médico-Chirurgicaux Assistés par Ordinateur(2011); ANR-10-EQPX-0044,ROBOTEX,Réseau national de plateformes robotiques d'excellence(2010); ANR-21-ESRE-0015,TIRREX,Infrastructure technologique pour la recherche d'excellence en robotique(2021)
نبذة مختصرة : International audience ; In this paper, we focus on the carrying out and validation of minimally invasive three-dimensional (3D) ultrasound (US) imaging of the auditory system, which is based on a new miniaturized endoscopic 2D US transducer. This unique probe consists of a 18 MHz 24 elements curved array transducer with a distal diameter of 4 mm so it can be inserted into the external auditory canal. Typical acquisition is achieved by rotating such a transducer around its own axis using a robotic platform. Reconstruction of a US volume from the set of acquired B-scans during the rotation is then performed using scan-conversion. The accuracy of the reconstruction procedure is evaluated using a dedicated phantom that includes a set of wires as reference geometry. Twelve acquisitions obtained from different probe poses are compared to a micro-computed tomographic model of the phantom, leading to a maximum error of 0.20 mm. Additionally, acquisitions with a cadaveric head highlight the clinical applicability of this set up. Structures of the auditory system such as the ossicles and the round window can be identified from the obtained 3D volumes. These results confirm that our technique enables the accurate imaging of the middle and inner ears without having to deteriorate the surrounding bone. Since US is a real-time, wide available and non-ionizing imaging modality, our acquisition setup could facilitate the minimally invasive diagnosis and surgical navigation for otology in a fast, costeffective and safe way.
No Comments.