نبذة مختصرة : We consider the approximation of a bone remodeling model with the Signorini contact conditions by a contact problem with normal compliant obstacle, when the obstacle's deformability coefficient converges to zero (that is, the obstacle's stiffness tends to infinity). The variational problem is a coupled system composed of a nonlinear variational equation (in the case of normal compliance contact conditions) or a variational inequality (for the case of Signorini's contact conditions), for the mechanical displacement field, and a first-order ordinary differential equation for the bone remodeling function. A theoretical result, which states the convergence of the contact problem with normal compliance contact law to the Signorini problem, is then proved. Finally, some numerical simulations, involving examples in one and two dimensions, are reported to show this convergence behaviour. ; http://www.sciencedirect.com/science/article/B6WK2-4RR900J-1/1/0ce05c677b442a8b380f20bf7790ec22
No Comments.