Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Post-prognostics decision-making strategy for load allocation on a stochastically deteriorating multi-stack fuel cell system

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      GIPSA - Safe, Controlled and Monitored Systems (GIPSA-SAFE); GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD); Grenoble Images Parole Signal Automatique (GIPSA-lab); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ); Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ); Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab); Université Grenoble Alpes (UGA); Laboratoire d'Informatique et des Systèmes (LIS) (Marseille, Toulon) (LIS); Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS); ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019); ANR-15-IDEX-0002,UGA,IDEX UGA(2015)
    • بيانات النشر:
      HAL CCSD
      SAGE Publications
    • الموضوع:
      2023
    • Collection:
      Université Grenoble Alpes: HAL
    • نبذة مختصرة :
      International audience ; This work proposes a load allocation decision strategy based on deterioration prognostics information for multi-stack fuel cell systems. The fuel cell deterioration is characterized by the overall resistance value, as it carries the key aging information of a fuel cell. The fuel cell deterioration dynamics is then modeled as an increasing stochastic process whose trend is a function of the fuel cell output power. Combining system deterioration and fuel cell consumption, a multi-objective optimization (MOO) based decision-making strategy is proposed to manage the operation of a multi-stack fuel cell system. Based on this algorithm, the optimal operating power load is computed for each stack. Finally, the performance of the proposed approach is compared to the case without post-prognostics decision for a three-stack fuel cell system. The simulation results show that the proposed post-prognostics decision-making strategy can manage fuel cell system operating in real time by scheduling the optimal load allocation among stacks.
    • Relation:
      hal-03626797; https://hal.science/hal-03626797; https://hal.science/hal-03626797/document; https://hal.science/hal-03626797/file/JRR-21-0158Rev-HAL.pdf
    • الرقم المعرف:
      10.1177/1748006X221086381
    • Rights:
      http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E3B856F3