Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Development of a digital tool for monitoring the behaviour of pre-weaned calves using accelerometer neck-collars

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      University College Dublin Dublin (UCD); VistaMilk SFI Research Centre Moorepark, Fermoy; Teagasc Food Research Centre Fermoy, Ireland; Teagasc - The Agriculture and Food Development Authority (Teagasc); Wageningen University and Research Wageningen (WUR); Animal & Grassland Research and Innovation Centre; Irish Agriculture and Food Development Authority; Génétique Physiologie et Systèmes d'Elevage (GenPhySE); Ecole Nationale Vétérinaire de Toulouse (ENVT); Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Université de Toulouse (UT)-École nationale supérieure agronomique de Toulouse (ENSAT); Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2024
    • Collection:
      Institut National de la Recherche Agronomique: ProdINRA
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Automatic monitoring of calf behaviour is a promising way of assessing animal welfare from their first week on farms. This study aims to (i) develop machine learning models from accelerometer data to classify the main behaviours of pre-weaned calves and (ii) set up a digital tool for monitoring the behaviour of pre-weaned calves from the models’ prediction. Thirty pre-weaned calves were equipped with a 3-D accelerometer attached to a neck-collar for two months and filmed simultaneously. The behaviours were annotated, resulting in 27.4 hours of observation aligned with the accelerometer data. The time-series were then split into 3 seconds windows. Two machine learning models were tuned using data from 80% of the calves: (i) a Random Forest model to classify between active and inactive behaviours using a set of 11 hand-craft features [model 1] and (ii) a RidgeClassifierCV model to classify between lying, running, drinking milk and other behaviours using ROCKET features [model 2]. The performance of the models was tested using data from the remaining 20% of the calves. Model 1 achieved a balanced accuracy of 0.92. Model 2 achieved a balanced accuracy of 0.84. Behavioural metrics such as daily activity ratio and episodes of running, lying, drinking milk, and other behaviours expressed over time were deduced from the predictions. All the development was finally embedded into a Python dashboard so that the individual calf metrics could be displayed directly from the raw accelerometer files.
    • الدخول الالكتروني :
      https://hal.science/hal-04622022
      https://hal.science/hal-04622022v1/document
      https://hal.science/hal-04622022v1/file/ECPLF_def.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E35593EB