Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Multivariate evidence-based pediatric dengue severity prediction at hospital arrival

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Statistique mathématique et apprentissage (CELESTE); Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Mathématiques d'Orsay (LMO); Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS); Institut Pasteur du Cambodge; Réseau International des Instituts Pasteur (RIIP); Kantha Bopha Hospitals Foundation; Génétique fonctionnelle des maladies infectieuses - Functional Genetics of Infectious Diseases; Institut Pasteur Paris (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Data generation was funded by BioMérieux (www.biomerieux.com) and Institut Pasteur du Cambodge. This study received funding from the French government's Investissement d'Avenir program, Laboratoire d'Excellence "Integrative Biology of Emerging Infectious Diseases" (grant: ANR-10-LABX_62°IBEID). TC is supported by a Wellcome-HHMI International Scholar award (Grant n°208710/Z/17/Z – www.wellcome.ac.uk); ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2022
    • Collection:
      Réseau International des Instituts Pasteur, Paris: HAL-RIIP
    • نبذة مختصرة :
      Background: For individuals with dengue-like symptoms arriving at hospitals, early detection of those likely to progress to-or not progress to-severe dengue can be of great use. Methods: We studied 237 Cambodian children hospitalised in Kampong Cham hospital with dengue-like symptoms. Using dengue severity as primary endpoint, we ran univariate analyses and built multivariate random forest classifiers to predict this endpoint using early clinical and laboratory data. Findings: In a random forest analysis using 56 available variables we obtained AUC = 0•94, and for a sensitivity of 90%: specificity = 89%, positive predictive value (PPV) = 74%, and negative predictive value (NPV) = 96%. Platelet count, HDL cholesterol, and ultrasound pleural effusion and ascites were the four variables most associated with severe dengue outcomes. A random forest on only these four variables gave AUC = 0·88, and for a sensitivity of 90%: specificity = 82%, PPV = 64%, and NPV = 96%. Interpretation. Future severe dengue with significant vascular leakage can be correctly predicted at hospital arrival in a large majority of cases using multivariate random forests. In addition to platelet count and ultrasound pleural effusion and ascites, HDL cholesterol level on the day of admission is also a strong predictor of severe dengue.
    • Relation:
      hal-03881145; https://inria.hal.science/hal-03881145; https://inria.hal.science/hal-03881145/document; https://inria.hal.science/hal-03881145/file/DengueClinical_2022.pdf
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E31F822B