Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Numerical analysis of evaporation reduction in floating photovoltaic power plants: influence of design parameters

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre d'Energétique et de Thermique de Lyon (CETHIL); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS); Technologies et Recherche pour l'Efficacité Energétique (EDF R&D TREE); EDF R&D (EDF R&D); EDF (EDF)-EDF (EDF); Centre d'Enseignement et de Recherche en Environnement Atmosphérique (CEREA); École nationale des ponts et chaussées (ENPC)-EDF R&D (EDF R&D); Mécanique des Fluides, Energies et Environnement EDF R & D = Fluid Mechanics, Energy and Environment EDF R & D (EDF R&D MFEE); Laboratoire National d’Hydraulique et Environnement (EDF R&D LNHE)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2025
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      International audience ; Evaporation reduction is one of the advantages provided by floating photovoltaic (FPV) power plants. However, few studies have yet been carried out to understand how to optimise the layout of FPV power plants in order to provide better water management. Indeed, the interaction between atmospheric conditions, water bodies, and the FPV plant creates a dynamic system that is challenging to study and accurately model. This paper investigates the impact on evaporation of various characteristics of FPV plants, such as float technology, plant positioning and orientation, distribution, and coverage ratio. This study was performed using Computational Fluid Dynamics (CFD) of the surrounding atmosphere, with the impact of the FPV plant modelled using specific boundary conditions to reduce computational costs. The numerical results show that the coverage ratio is the most important factor in reducing evaporation. Full coverage could reduce evaporation by 52.8% for a plant with a large footprint on the water and by 43.4% for a plant with a smaller footprint. Other parameters have only a moderate impact, allowing the fine-tuning of evaporation reduction. The optimal configuration would involve covering the entire water body with a single large water footprint island positioned downwind of the prevailing transversal winds. This setup significantly reduces evaporation, thereby enhancing water conservation and making an FPV power plant a valuable tool in sustainable water management.
    • الرقم المعرف:
      10.1051/epjpv/2024047
    • الدخول الالكتروني :
      https://hal.science/hal-04876157
      https://hal.science/hal-04876157v1/document
      https://hal.science/hal-04876157v1/file/pv20240049.pdf
      https://doi.org/10.1051/epjpv/2024047
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E1CCC0B2