Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Theoretical derivation of Darcy's law for fluid flow in thin porous media

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
    • بيانات النشر:
      Wiley
    • الموضوع:
      2024
    • Collection:
      idUS - Deposito de Investigación Universidad de Sevilla
    • نبذة مختصرة :
      In this paper we study stationary incompressible Newtonian fluid flow in a thin porous media. The media under consideration is a bounded perforated $3D$ domain confined between two parallel plates. The description of the domain includes two small parameters: $\varepsilon$ representing the distance between pates and $a_\ep$ connected to the microstructure of the domain such that $a_\ep\ll \ep$. We consider the classical setting of perforated media, i.e. $a_\ep$-periodically distributed solid (not connected) obstacles of size $a_\varepsilon$. The goal of this paper is to introduce a version of the unfolding method, depending on both parameters $\varepsilon$ and $a_\varepsilon$, and then to derive the corresponding 2D Darcy's law.
    • Relation:
      https://doi.org/10.1002/mana.202000184; https://idus.us.es/handle//11441/162350
    • الدخول الالكتروني :
      https://idus.us.es/handle//11441/162350
    • Rights:
      Attribution-NonCommercial-NoDerivatives 4.0 Internacional ; http://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.E13B9259