Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

GESTALT-INSPIRED FEATURES EXTRACTION FOR OBJECT CATEGORY RECOGNITION

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      School of Electronic Engineering and Computer Science (EECS); Queen Mary University of London (QMUL); Laboratoire Electronique, Informatique et Image UMR6306 (Le2i); Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM); Arts et Métiers Sciences et Technologies; HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Arts et Métiers Sciences et Technologies; HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2013
    • Collection:
      Université de Bourgogne (UB): HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; We propose a methodology inspired by Gestalt laws to ex- tract and combine features and we test it on the object cat- egory recognition problem. Gestalt is a psycho-visual the- ory of Perceptual Organization that aims to explain how vi- sual information is organized by our brain. We interpreted its laws of homogeneity and continuation in link with shape and color to devise new features beyond the classical proxim- ity and similarity laws. The shape of the object is analyzed based on its skeleton (good continuation) and as a measure of homogeneity, we propose self-similarity enclosed within shape computed at super-pixel level. Furthermore, we pro- pose a framework to combine these features in different ways and we test it on Caltech 101 database. The results are good and show that such an approach improves objectively the ef- ficiency in the task of object category recognition.
    • Relation:
      hal-00839640; https://u-bourgogne.hal.science/hal-00839640; https://u-bourgogne.hal.science/hal-00839640/document; https://u-bourgogne.hal.science/hal-00839640/file/klavdianos.pdf
    • الدخول الالكتروني :
      https://u-bourgogne.hal.science/hal-00839640
      https://u-bourgogne.hal.science/hal-00839640/document
      https://u-bourgogne.hal.science/hal-00839640/file/klavdianos.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.DF733EDA