Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Nonlinear third order silicon photonics enabled by dispersion and subwavelength engineering

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)); Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS); Institut d'électronique fondamentale (IEF); Massachusetts Institute of Technology (MIT); Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant (PIAF); Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne 2017-2020 (UCA 2017-2020 ); School of Materials Science and Engineering (COMSET); Clemson University; Laboratoire Charles Fabry / Manolia; Laboratoire Charles Fabry (LCF); Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS); Department of Materials Science & Engineering; University of Delaware Newark; STMicroelectronics Crolles (ST-CROLLES)
    • بيانات النشر:
      CCSD
      OSA
    • الموضوع:
      2019
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Integrated photonics has for several years included in its panoply the development of functions based on third-order non-linear optical phenomena, from the generation of supercontinuum or frequency comb sources to metrology or spectroscopy on chip applications. This natural evolution, after the development of high-speed transceivers in the last few years, particularly in silicon photonics, is based on a number of compromises and still has to solve problems, particularly concerning the integration of nonlinear materials on silicon and their exploitation. The work we present addresses two directions. The first is oriented towards the development of a supercontinuum source using Nitrogen-rich photonic circuits from an industrial CMOS platform, while the second aims at the development of hybrid highly nonlinear waveguides significantly reducing the impact of twophoton absorption in the telecom window around 1,55µm by exploiting silicon slot waveguides infiltrated by chalcogenide glasses (As2S3).
    • الرقم المعرف:
      10.1364/oedi.2019.ow1c.2
    • الدخول الالكتروني :
      https://universite-paris-saclay.hal.science/hal-04475728
      https://universite-paris-saclay.hal.science/hal-04475728v1/document
      https://universite-paris-saclay.hal.science/hal-04475728v1/file/Lafforgue%202019-1.pdf
      https://doi.org/10.1364/oedi.2019.ow1c.2
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.DF03AFA7