Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Towards Non-invasive Lung Tumor Tracking Based on Patient-Specific Model of Respiratory System

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Simulation, Analyse et Animation pour la Réalité Augmentée (SAARA); Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS); Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS); Institut de Physique des 2 Infinis de Lyon (IP2I Lyon); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS); Faculté de médecine, université Paris Descartes, Paris, France; Service de néphrologie, hôpital Européen Georges-Pompidou, Assistance-Publique Hôpitaux de Paris, Paris, France; This research is supported by the LABEX PRIMES (ANR-11-LABX-0063), within the program Investissements dAvenir(ANR-11-IDEX- 0007)operated by the French National Research Agency (ANR) and by France Hadron; ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011); ANR-11-IDEX-0007,Avenir L.S.E.,PROJET AVENIR LYON SAINT-ETIENNE(2011)
    • بيانات النشر:
      HAL CCSD
      Institute of Electrical and Electronics Engineers
    • الموضوع:
      2021
    • Collection:
      HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)
    • نبذة مختصرة :
      International audience ; The goal of this paper is to calculate a complex internal respiratory and tumoral movements by measuring respiratory air flows and thorax movements. In this context, we present a new lung tumor tracking approach based on a patient-specific biomechanical model of the respiratory system, which takes into account the physiology of respiratory motion to simulate the real non-reproducible motion. The behavior of the lungs, is directly driven by the simulated actions of the breathing muscles, i.e. the diaphragm and the intercostal muscles (the rib cage). In this paper, the lung model is monitored and controlled by a personalized lung pressure/volume relationship during a whole respiratory cycle. The lung pressure and rib kinematics are patient specific and obtained by surrogate measurement. The rib displacement corresponding to the transformation which was computed by finite helical axis method from the end of exhalation (EE) to the end of inhalation (EI). The lung pressure is calculated by an optimization framework based on inverse finite element analysis, by minimizing the lung volume errors, between the respiratory volume (respiratory airflow exchange) and the simulated volume (calculated by biomechanical simulation). We have evaluated the model accuracy on five public datasets. We have also evaluated the lung tumor motion identified in 4D CT scan images and compared it with the trajectory that was obtained by finite element simulation. The effects of rib kinematics on lung tumor trajectory were investigated. Over all phases of respiration, our developed model is able to predict the lung tumor motion with an average landmark error of 2.0 ∓ 1.3mm. The results demonstrate the effectiveness of our physics-based model. We believe that this model can be potentially used in 4D dose computation, removal of breathing motion artifacts in positron emission tomography (PET) or gamma prompt image reconstruction.
    • Relation:
      hal-03113681; https://hal.science/hal-03113681; https://hal.science/hal-03113681/document; https://hal.science/hal-03113681/file/TBME_LUNG_LADJAL.pdf; INSPIRE: 1915160
    • الرقم المعرف:
      10.1109/TBME.2021.3053321
    • الدخول الالكتروني :
      https://hal.science/hal-03113681
      https://hal.science/hal-03113681/document
      https://hal.science/hal-03113681/file/TBME_LUNG_LADJAL.pdf
      https://doi.org/10.1109/TBME.2021.3053321
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.DE52EFED