Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia) ; Evaluation of the chemical demineralization of semianthracites from mines located in Boyacá and Santander (Colombia)

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Corporación Universidad de la Costa
    • الموضوع:
      2019
    • Collection:
      REDICUC - Repositorio Universidad de La Costa
    • نبذة مختصرة :
      Introduction− The non-energy use of high-range carbons (anthracite) has great potential in industries such as metallurgy and in the synthesis of new carbonaceous materials. However, before being used in these applications, they must be treated to remove impurities or unwanted compounds. Objective− To evaluate the efficiency of the process of chemical demineralization of semianthracites through the use of different acids varying the operating conditions of the process. Method− Two samples were chemically characterized: Boavita (B) and Capitanejo (C) from the Boyacá and Santander (Colombia) mines, respectively. Ash and mineral matter removal from the samples was evaluated using [HCl] = 5M, HF 40% and HCl 38% at two different reaction times (45 and 60 minutes) and two particle sizes of the material (250 and 500 µm). Results− The minimum values of ash content (bs) reached through the demineralization process for samples B and C, were 0.65 and 0.76% respectively, which were obtained with a particle size of 250 µm and 60 minutes of exposure in each of the acids used in this study. Conclusions− A smaller particle size increases the contact surface and improves the degree of demineralization, regardless of the time of exposure to acids. The efficiency of the chemical benefit shows yields in the reduction of silicates, aluminates and aluminosilicates to 100%, while for ferric minerals it is above 50%. ; Introducción− El uso no energético de carbones de alto rango (antracitas) tiene un gran potencial en industrias tales como la metalurgia y en la síntesis de nuevos materiales carbonosos. Sin embargo, antes de su uso en estas aplicaciones, estos deben ser tratados para eliminar impurezas o compuestos no deseados. Objetivo− Evaluar la eficiencia del proceso de desmineralización química de semiantracitas mediante el uso de diferentes ácidos variando las condiciones de operación del proceso. Metodología− Se realizó la caracterización química de dos muestras: Boavita (B) y Capitanejo (C) provenientes de minas de Boyacá y ...
    • File Description:
      9 páginas; application/pdf
    • ISSN:
      2382-4700
      0122-6517
    • Relation:
      INGE CUC; Vol. 15, Núm. 2 (2019); INGE CUC; [1] J. M. Andrésen, C. E. Burgess, P. J. Pappano and H. H. Schobert, “New directions for non-fuel uses of anthracites,” Fuel Processing Technology, vol. 85, no. 12, pp. 1373–1392, Aug. 2004. https://doi.org/10.1016/j.fuproc.2003.05.001; [2] W. Xia, G. Xie and Y. Peng, “Recent advances in beneficiation for low rank coals,” Powder Technol., vol. 277, pp. 206–221, Jun. 2015. https://doi.org/10.1016/j.powtec.2015.03.003; [3] I. M. Mejia-Villarreal, “Producción de carbón ultralimpio por desmineralización física y química”, M. S. thesis, Dept. Ing. quim., Universidad del Valle, Cali, Colombia, 2004.; [4] M. Alfaro-Domínguez, F. J. Higes-Rolando, M. L. RojasCervantes and V. Gómez-Serrano, “Demineralisation of semi-anthracite char with molten salts/HCl. Effects on the porous texture and reactivity in air,” Appl. Surf. Sci., vol. 252, no. 17, pp. 6005–6008, Jun. 2006. https://doi. org/10.1016/j.apsusc.2005.11.002; [5] J. W. Leonard, Coal preparation. Society for Mining, Englewood, Colorado, USA: Metallurgy and Exploration, 1991.; [6] M. C. Vanegas Chamorro, “Estudio del mecanismo de grafitización de antracitas sudafricanas,” M. S. thesis, Dept. Ing. quim., Universidad de Oviedo, Oviedo, España, 2012.; [7] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal - A review,” Renew. Sustain. Energy Rev., vol. 41, pp. 745–761, Jan. 2015. https://doi.org/10.1016/j.rser.2014.08.072; [8] S. K. Behera, S. Chakraborty and B. C. Meikap, “Chemical demineralization of high ash Indian coal by using alkali and acid solutions,” Fuel, vol. 196, pp. 102–109, May. 2017. https://doi.org/10.1016/j.fuel.2017.01.088; [9] M. K. Saini, P. K. Srivastava and N. Choudhury, “Development of Moisture and Ash Based Correlation for the Estimation of Mineral Matter in High Ash Indian Coal,” Int. J. Clean Coal Energy, vol. 4, no. 2, pp. 33–42, May. 2015. https://doi.org/10.4236/ijcce.2015.42004; [10] B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach. Boca Raton, Florida, USA: CRC Press Taylor and Francis Group, 1998.; [11] A. M. Puziy, O. I. Poddubnaya, A. Martínez-Alonso, A. Castro-Muñiz, F. Suárez-García and J. M. D. Tascón, “Oxygen and phosphorus enriched carbons from lignocellulosic material,” Carbon N. Y., vol. 45, no. 10, pp. 1941–1950, Sep. 2007. https://doi.org/10.1016/j.carbon.2007.06.014; [12] H. Machnikowska, A. Krztoń, and J. Machnikowski, “The characterization of coal macerals by diffuse reflectance infrared spectroscopy,” Fuel, vol. 81, no. 2, pp. 245–252, Jan. 2002. https://doi.org/10.1016/S0016-2361(01)00125- 9; [13] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. Hoboken, Nueva Jersey, USA: John Wiley & Sons, 2004.; [14] P. C. Painter, M. Starsinic, E. Squires and A. A. Davis, “Concerning the 1600 cm−1 region in the i.r. spectrum of coal,” Fuel, vol. 62, no. 6, pp. 742–744, Jun. 1983. https:// doi.org/10.1016/0016-2361(83)90317-4; [15] S. zhang, z. Chen, X. Chen and X. Gong, “Effects of ash/ K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite,” J. of Fuel Chemistry and Technol., vol. 42, no. 2, pp. 166-174, Feb. 2014. https:// doi.org/10.1016/S1872-5813(14)60013-X; [16] X. Gong and S. zhang, “Changes in char structure due to inorganic matters during anthracite pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 127, pp. 170-175, Sept. 2017. https://doi.org/10.1016/j.jaap.2017.08.011; [17] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal- A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 745-761, Jan. 2015. https://doi.org/10.1016/j. rser.2014.08.072; 55; 47; Antracitas; Beneficio químico; Materia mineral; Desmineralización; Ácido clorhídrico; Ácido fluorhídrico; Anthracite; Chemical beneficiat; Mineral matter; Demineralization; Hydrochloric acid; Hydrofluoric acid; 15; Wilmer Alexander Lugo-Martínez; Huber Yesid Avila-Rios; Marley Cecilia Vanegas-Chamorro; Alberto Albis-Arrieta; Marco Antonio ArdilaBarragán. “Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)” INGE CUC, vol. 15, no. 2, pp. 47-55, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.05; http://hdl.handle.net/11323/5812; https://doi.org/10.17981/ingecuc.15.2.2019.05; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
    • الرقم المعرف:
      10.17981/ingecuc.15.2.2019.05
    • الدخول الالكتروني :
      http://hdl.handle.net/11323/5812
      https://doi.org/10.17981/ingecuc.15.2.2019.05
      https://repositorio.cuc.edu.co/
    • Rights:
      CC0 1.0 Universal ; http://creativecommons.org/publicdomain/zero/1.0/ ; info:eu-repo/semantics/openAccess ; http://purl.org/coar/access_right/c_abf2
    • الرقم المعرف:
      edsbas.DDDF03F2