نبذة مختصرة : Gene, protein and cell interactions are vital for the development of a multicellular organism. As a result, complexity theory can be a fundamental tool to understand how diverse developmental and evolutionary processes occur. However, in most scientific programs these two fields are separated. In an effort to create a connection between the Evo-devo and complexity science, this article shows how the cell dynamics of epithelia can display behaviours with similar features to complex systems. Here, I propose that these cell dynamics, in addition to control cell density in epithelia, can provide high evolvability to this type of tissue. To achieve this goal, I used a as a systems the development of Drosophila melanogaster front legs. First, I provide an example in which order at the tissue level emerge from apparently random cell dynamics. Then, I show that small modifications in epithelial cellular components can produce highly organized or the opposite random cell dynamics. Therefore, this work shows that a developing epithelium displays signs of complex behaviours and I propose that the feedback between tension and cellular processes are key for understanding how multicellular organisms development and evolve. Such studies may reveal the mechanistic basis of complex processes that bridge several levels of organization. ; La interacción de grupos de genes, proteínas, y células es necesaria para el desarrollo de un organismo multicelular. Por tal motivo, la teoría de la complejidad puede ser una herramienta indispensable para entender cómo diversos procesos embriológicos y evolutivos suceden. Sin embargo, en la mayoría de los programas de investigación estas áreas permanecen aisladas. En un esfuerzo por crear un punto de integración entre el Evo-Devo y las ciencias de la complejidad, en este documento propongo que las dinámicas celulares de epitelios pueden tener comportamientos que se asemejan a los encontrados en sistemas complejos. Dichas dinámicas celulares, además de regular la densidad celular de los ...
Relation: https://revistas.unal.edu.co/index.php/actabiol/article/view/53778/pdf_art4_21%283%29; https://revistas.unal.edu.co/index.php/actabiol/article/view/53778/57598; Ahuja A, Singh RS. Variation and evolution of male sex combs in Drosophila: nature of selection response and theories of genetic variation for sexual traits. Genetics. 2008;179(1):503-509. Doi:10.1534/genetics.107.086363.; Albert R, Barabasi A. Topology of evolving networks: local events and universality. Phy. Rev. Lett. 2000;85(24):5234-5237. Doi:10.1103/PhysRevLett.85.5234; Andrade E. Los demonios de Darwin: Semiótica y termodinámica de la evolución biológica. Bogotá: Editiorial Universidad Nacional de Colombia; 2003. p. XXVIII-XXIX.; Andrade E. La ontogenia del pensamiento evolutivo. Bogotá: Editiorial Universidad Nacional de Colombia. Bogotá; 2009. p. 107-109.; Atallah J. The development and evolution of complex patterns: the Drosophila Sex Comb as a model System (PhD thesis). Toronto: University of Toronto, Department of Cell and Systems Biology; University of Toronto. 2008; p. 45-90.; Ball P. The self-made tapestry: pattern formation in nature. New York: Oxford University Press; 2008. p. 30-50. Barabasi A, Bonabeau E. Scale-free networks. Sci Am. 2003;288(5):50-59. Doi:10.1038/scientificamerican0503-60; Bertet C, Sulak L, Lecuit T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature. 2004;429(6992):667-671. Doi:10.1038/nature02590; Blankenship JT, Backovic ST, Sanny JSP, Weitz O, Zallen JA. Multicellular Rosette Formation Links Planar Cell Polarity to Tissue Morphogenesis. Dev Cell. 2006;11(4):459-470. Doi:10.1016/j.devcel.2006.09.007; Camazine S, Deneuborg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G. Bonabeau, E. Self-organization in Biological Systems, Princenton: Princeton University Press. 2001. p. 11-13.; Dobrescu R, Purcarea V. Emergence, self-organization and morphogenesis in biological structures. J Med Life. 2011;4(1):82-90.; Eishenhoffer GT, Loftus PD, Yoshigi M, Otsuna H, Chien CB, Morscos PA, et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature. 2012;484 (7395):546-549. Doi:10.1038/nature10999; Fernandez-Gonzalez R, Zallen JA. Feeling the squeeze: live-cell extrusion limits cell density in epithelia. Cell. 2012;149(5):965-967. Doi:10.1016/j.cell.2012.05.006; Held L, Grimson M, Du Z. Proving an old prediction: the sex comb rotates at 16 to 24 hours after pupariation. Dros Inf Serv. 2004;87(1):76-78.; Jeong H, Albert R. The large-scale organization of metabolic networks. Nature. 2000;760 (6804):651-654. Doi:10.1038/35036627; Jeong H, Mason SP, Barabasi AL, Oltavi ZN. Lethality and centrality in protein networks. Nature. 2001;411:41-42. Doi:10.1038/35075138; Karsenti E. Self-organization in cell biology: a brief history. Nat Rev. 2008;9(3):255-262. Doi:10.1038/nrm2357; Kauffman SA. At the home in the universe. New York: Oxford University Press; 1995. p. 20-25.; Malagon JN, Waleed K. Evolution of allometric changes in fruit fly legs: a developmentally en-trenched story. Acta biol Colomb. 201621(3). Doi: http://dx.doi.org/10.15446/abc.v21n3.53650; Malagon JN. Sex combs in motion: Cellular processes involved in sex comb rotation in Drosophila melanogaster (PhD thesis). Toronto: Department of Cell and Systems Biology, Arts and Science Faculty, University of Toronto; 2013. p. 120-150.; Malagon JN, Larsen E. Heredity and self-organization: partners in the generation and evolution of phenotypes. Int Rev Cell Mol Biol. 2015;315:153-181. Doi:10.1016/bs.ircmb Marinari E. A study of epithelial cell delamination in Drosophila. London: Molecular and Cell Biology, Faculty of Science, London College University, 2011. p. 97-99.; Marinari E, Mehonic A, Curran S, Gale J, Duke T, Baum B. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature. 2012;484(7395):542-545. Doi:10.1038/nature10984.; Rubiano G. Iteración y Fractales. Bogotá: Editiorial Universidad Nacional de Colombia; 2009. p. 107-109.; Sole R. Redes complejas: del genoma a Internet. Barcelona: Editorial Metatemas; 2009. p. 1-10.; Sole R. Phase Transitions. Princenton: Princenton University Press, 2011. p-10-23.; Sole R, Gould B. Signs of Life: How complexity pervades biology. New York: Basic Book, 2000. p. 1-20.; Tanaka K, Barmina O, Kopp A. Distinct developmental mechanisms underlie the evolutionary diversification of Drosophila sex combs. Proc Natl Acad Sci USA. 2009;106(12):4764-4769. Doi:10.1073/pnas.0807875106; Tanaka K, Barmina O, Kopp, Sanders LE, Arbeitman MN, Kopp A. Evolution of sex-specific traits through changes in HOX-dependent doublesex expression. PLoS Biology. 2011;9(8):e.Doi:10.1371/journal.pbio.1001131; True J. Combing evolution. Evol Dev. 2008;10(4):400-402. Doi:10.1111/j.1525-142X.2008.00250; Turner JS. The Tinkerer's Accomplice. Cambridge: Harvard University Press; 2007. p. 10-44.; https://revistas.unal.edu.co/index.php/actabiol/article/view/53778
No Comments.