Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Threshold Regularization Method for Inverse Problems

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut de Mathématiques de Toulouse UMR5219 (IMT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2011
    • Collection:
      Université Toulouse 2 - Jean Jaurès: HAL
    • نبذة مختصرة :
      A number of regularization methods for discrete inverse problems consist in considering weighted versions of the usual least square solution. However, these so-called filter methods are generally restricted to monotonic transformations, e.g. the Tikhonov regularization or the spectral cut-off. In this paper, we point out that in several cases, non-monotonic sequences of filters are more efficient. We study a regularization method that naturally extends the spectral cut-off procedure to non-monotonic sequences and provide several oracle inequalities, showing the method to be nearly optimal under mild assumptions. Then, we extend the method to inverse problems with noisy operator and provide efficiency results in a newly introduced conditional framework.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1105.0490; hal-00589936; https://hal.science/hal-00589936; https://hal.science/hal-00589936/document; https://hal.science/hal-00589936/file/AThresholdRegularizationMethodforInverse.pdf; ARXIV: 1105.0490
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.DD6B4CB