Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Parameters Influencing Lane Flow Distribution on Multilane Freeways in PTV Vissim

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Elsevier
    • الموضوع:
      2021
    • Collection:
      KITopen (Karlsruhe Institute of Technologie)
    • نبذة مختصرة :
      In a parameter study, we systematically varied parameter values, and quantified the resulting traffic flow in each individual lane. We modeled two-, three-, and four-lane freeway sections with the microscopic traffic flow simulation tool PTV Vissim. We compared the results with findings from literature. Simulations using car following model Wiedemann 99 fit better to empirical studies than those using Wiedemann 74. Empirically determinable parameters, that have a relevant influence on lane flow distribution are desired speed distributions (mean for heavy-duty vehicles and standard deviation for cars), heavy-duty vehicle share, and the gradient of the section. Additionally, the driving behavior parameters CC1 (headway time), CC3 (threshold for entering following), and safety distance reduction factor have an influence. As CC1 is one of the most relevant parameters for calibrating capacity, CC3 and the safety distance reduction factor remain for lane flow adjustment.
    • File Description:
      application/pdf
    • Relation:
      info:eu-repo/semantics/altIdentifier/issn/1877-0509; https://publikationen.bibliothek.kit.edu/1000133536; https://publikationen.bibliothek.kit.edu/1000133536/115913482; https://doi.org/10.5445/IR/1000133536
    • الرقم المعرف:
      10.5445/IR/1000133536
    • الدخول الالكتروني :
      https://publikationen.bibliothek.kit.edu/1000133536
      https://publikationen.bibliothek.kit.edu/1000133536/115913482
      https://doi.org/10.5445/IR/1000133536
    • Rights:
      https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.DCBD4AA7