Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Differentially private multivariate time series forecasting of aggregated human mobility with deep learning: Input or gradient perturbation?

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Concurrency, Mobility and Transactions (COMETE); Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX); École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST); Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); Orange Labs Belfort (Orange Labs); France Télécom; Université Antonine (UA); National University of Singapore (NUS); ANR-17-EURE-0002,EIPHI,Ingénierie et Innovation par les sciences physiques, les savoir-faire technologiques et l'interdisciplinarité(2017); European Project: 835294,H2020 Pilier ERC,HYPATIA(2019)
    • بيانات النشر:
      HAL CCSD
      Springer Verlag
    • الموضوع:
      2022
    • Collection:
      Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
    • نبذة مختصرة :
      International audience ; This paper investigates the problem of forecasting multivariate aggregated human mobility while preserving the privacy of the individuals concerned. Differential privacy, a state-of-the-art formal notion, has been used as the privacy guarantee in two different and independent steps when training deep learning models. On one hand, we considered gradient perturbation, which uses the differentially private stochastic gradient descent algorithm to guarantee the privacy of each time series sample in the learning stage. On the other hand, we considered input perturbation, which adds differential privacy guarantees in each sample of the series before applying any learning. We compared four state-of-the-art recurrent neural networks: Long ShortTerm Memory, Gated Recurrent Unit, and their Bidirectional architectures, i.e., Bidirectional-LSTM and Bidirectional-GRU. Extensive experiments were conducted with a real-world multivariate mobility dataset, which we published openly along with this paper. As shown in the results, differentially private deep learning models trained under gradient or input perturbation achieve nearly the same performance as non-private deep learning models, with loss in performance varying between 0.57% to 2.8%. The contribution of this paper is significant for those involved in urban planning and decision-making, providing a solution to the human mobility multivariate forecast problem through differentially private deep learning models.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2205.00436v2; info:eu-repo/grantAgreement//835294/EU/Privacy and Utility Allied/HYPATIA; hal-03689723; https://hal.inria.fr/hal-03689723; https://hal.inria.fr/hal-03689723/document; https://hal.inria.fr/hal-03689723/file/2022_DPDL_Time_Series_Input_VS_Gradient.pdf; ARXIV: 2205.00436v2
    • الرقم المعرف:
      10.1007/s00521-022-07393-0
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.DC4183FE