Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Modélisation Mathématique pour l'Oncologie (MONC); Institut de Mathématiques de Bordeaux (IMB); Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Institut Bergonié Bordeaux; UNICANCER-UNICANCER-Inria Bordeaux - Sud-Ouest; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS); Department of Cancer Genetics Buffalo; Roswell Park Cancer Institute Buffalo (RPCI); Simulation & Modelling : Adaptive Response for Therapeutics in Cancer (SMARTc unit); Centre de Recherches en Oncologie biologique et Oncopharmacologie (CRO2); Aix Marseille Université (AMU)-Hôpital de la Timone CHU - APHM (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Aix Marseille Université (AMU)-Hôpital de la Timone CHU - APHM (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM); Department of Medicine Buffalo; This study was supported by a public grant from the French State, managed by the French National Research Agency (ANR) in the frame of the "Investments for the future" Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02). This work was also supported by Roswell Park Alliance Foundation (RPAF) and by the Department of Defense (DoD), through the Peer Reviewed Cancer Research Program, under Award No. W81XWH-14-1-0210 (both to JMLE).; ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010)
    • بيانات النشر:
      HAL CCSD
      American Association for Cancer Research
    • الموضوع:
      2016
    • Collection:
      Aix-Marseille Université: HAL
    • نبذة مختصرة :
      International audience ; Rapid improvements in the detection and tracking of early-stage tumor progression aim to guide decisions regarding cancer treatments as well as predict metastatic recurrence in patients following surgery. Mathematical models may have the potential to further assist in estimating metastatic risk, particularly when paired with in vivo tumor data that faithfully represent all stages of disease progression. Herein we describe mathematical analysis that uses data from mouse models of spontaneous metastasis developing after surgical removal of orthotopically implanted primary tumors. Both presurgical (primary tumor) and postsurgical (metastatic) growth was quantified using bioluminescence and was then used to generate a mathematical formalism based on general laws of the disease (i.e. dissemination and growth). The model was able to fit and predict pre-/post-surgical data at the level of the individual as well as the population. Our approach also enabled retrospective analysis of clinical data describing the probability of metastatic relapse as a function of primary tumor size. In these data-based models, inter-individual variability was quantified by a key parameter of intrinsic metastatic potential. Critically, our analysis identified a highly nonlinear relationship between primary tumor size and postsurgical survival, suggesting possible threshold limits for the utility of tumor size as a predictor of metastatic recurrence. These findings represent a novel use of clinically relevant models to assess the impact of surgery on metastatic potential and may guide optimal timing of treatments in neoadjuvant (presurgical) and adjuvant (postsurgical) settings to maximize patient benefit.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/26511632; hal-01222046; https://inria.hal.science/hal-01222046; https://inria.hal.science/hal-01222046v2/document; https://inria.hal.science/hal-01222046v2/file/benzekryEbos_surgery_all_HAL.pdf; PUBMED: 26511632
    • الرقم المعرف:
      10.1158/0008-5472.CAN-15-1389
    • Rights:
      http://creativecommons.org/licenses/by-nc/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.DB41647E