Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Recursive and non-recursive regression estimators using Bernstein polynomials

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de mathématiques et applications UMR 7348 (LMA Poitiers ); Université de Poitiers = University of Poitiers (UP)-Centre National de la Recherche Scientifique (CNRS); Faculté des Sciences de Bizerte Université de Carthage; Université de Carthage (Tunisie) (UCAR)
    • بيانات النشر:
      HAL CCSD
      John Wiley & Sons
    • الموضوع:
      2022
    • Collection:
      Université de Poitiers: Publications de nos chercheurs.ses (HAL)
    • نبذة مختصرة :
      International audience ; If a regression function has a bounded support, the kernel estimates often exceed the boundaries and are therefore biased on and near these limits. In this paper, we focus on mitigating this boundary problem. We apply Bernstein polynomials and the Robbins-Monro algorithm to construct a non-recursive and recursive regression estimator. We study the asymptotic properties of these estimators, and we compare them with those of the Nadaraya-Watson estimator and the generalized Révész estimator introduced by Mokkadem et al. [21]. In addition, through some simulation studies, we show that our non-recursive estimator has the lowest integrated root mean square error (ISE) in most of the considered cases. Finally, using a set of real data, we demonstrate how our non-recursive and recursive regression estimators can lead to very satisfactory estimates, especially near the boundaries.
    • Relation:
      hal-04389574; https://univ-poitiers.hal.science/hal-04389574; https://univ-poitiers.hal.science/hal-04389574/document; https://univ-poitiers.hal.science/hal-04389574/file/91-SLAOUI_JMAEI_TSP_2022.pdf
    • الرقم المعرف:
      10.37863/tsp-2899660400-77
    • الدخول الالكتروني :
      https://univ-poitiers.hal.science/hal-04389574
      https://univ-poitiers.hal.science/hal-04389574/document
      https://univ-poitiers.hal.science/hal-04389574/file/91-SLAOUI_JMAEI_TSP_2022.pdf
      https://doi.org/10.37863/tsp-2899660400-77
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.DA90D4F9