Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Estimating classification images with generalized linear and additive models. ; Estimating classification images with generalized linear and additive models.: Classification images with GLM and GAM

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut cellule souche et cerveau (SBRI); Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM); Department of Psychology, Center for Neural Science; New York University New York (NYU); NYU System (NYU)-NYU System (NYU)
    • بيانات النشر:
      HAL CCSD
      ARVO Journals
    • الموضوع:
      2008
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      International audience ; Conventional approaches to modeling classification image data can be described in terms of a standard linear model (LM). We show how the problem can be characterized as a Generalized Linear Model (GLM) with a Bernoulli distribution. We demonstrate via simulation that this approach is more accurate in estimating the underlying template in the absence of internal noise. With increasing internal noise, however, the advantage of the GLM over the LM decreases and GLM is no more accurate than LM. We then introduce the Generalized Additive Model (GAM), an extension of GLM that can be used to estimate smooth classification images adaptively. We show that this approach is more robust to the presence of internal noise, and finally, we demonstrate that GAM is readily adapted to estimation of higher order (nonlinear) classification images and to testing their significance.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/19146276; inserm-00323633; https://www.hal.inserm.fr/inserm-00323633; https://www.hal.inserm.fr/inserm-00323633/document; https://www.hal.inserm.fr/inserm-00323633/file/KnoblauchMaloney.INPRESS.JOV.2008.pdf; https://www.hal.inserm.fr/inserm-00323633/file/inserm-00323633_edited.pdf; PUBMED: 19146276
    • الرقم المعرف:
      10.1167/8.16.10
    • الدخول الالكتروني :
      https://www.hal.inserm.fr/inserm-00323633
      https://www.hal.inserm.fr/inserm-00323633/document
      https://www.hal.inserm.fr/inserm-00323633/file/KnoblauchMaloney.INPRESS.JOV.2008.pdf
      https://www.hal.inserm.fr/inserm-00323633/file/inserm-00323633_edited.pdf
      https://doi.org/10.1167/8.16.10
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.D9EE9397