Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

ProstAttention-Net: A deep attention model for prostate cancer segmentation by aggressiveness in MRI scans ; ProstAttention-Net: a deep attention model for prostate cancer segmentation by aggressiveness in MRI scans

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Modeling & analysis for medical imaging and Diagnosis (MYRIAD); Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); Department of Urinary and Vascular Radiology; Hospices Civils de Lyon (HCL); Université de Sherbrooke (UdeS); ANR-17-RHUS-0006,PERFUSE,Personalized Focused Ultrasound Surgery of Localized Prostate Cancer(2017)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2022
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      International audience ; Multiparametric magnetic resonance imaging (mp-MRI) has shown excellent results in the detection of prostate cancer (PCa). However, characterizing prostate lesions aggressiveness in mp-MRI sequences is impossible in clinical practice, and biopsy remains the reference to determine the Gleason score (GS). In this work, we propose a novel end-to-end multi-class network that jointly segments the prostate gland and cancer lesions with GS group grading. After encoding the information on a latent space, the network is separated in two branches: 1) the first branch performs prostate segmentation 2) the second branch uses this zonal prior as an attention gate for the detection and grading of prostate lesions. The model was trained and validated with a 5-fold cross-validation on an heterogeneous series of 219 MRI exams acquired on three different scanners prior prostatectomy. In the free-response receiver operating characteristics (FROC) analysis for clinically significant lesions (defined as GS > 6) detection, our model achieves 69.0% ±14.5% sensitivity at 2.9 false positive per patient on the whole prostate and 70.8% ±14.4% sensitivity at 1.5 false positive when considering the peripheral zone (PZ) only. Regarding the automatic GS group
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2211.13238; hal-03704155; https://hal.science/hal-03704155; https://hal.science/hal-03704155/document; https://hal.science/hal-03704155/file/main_finalversion_compressed.pdf; ARXIV: 2211.13238
    • الرقم المعرف:
      10.1016/j.media.2021.102347
    • الدخول الالكتروني :
      https://hal.science/hal-03704155
      https://hal.science/hal-03704155/document
      https://hal.science/hal-03704155/file/main_finalversion_compressed.pdf
      https://doi.org/10.1016/j.media.2021.102347
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.D766F43C