Contributors: Ecosystèmes, biodiversité, évolution Rennes (ECOBIO); Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS); Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR); Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS); Institut de Génétique, Environnement et Protection des Plantes (IGEPP); Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST; Institut de Géoarchitecture (GEOARCHI); Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois des Sciences de l'Homme et de la Société (IBSHS); Université de Brest (UBO)-Université de Brest (UBO); Plateforme technologique de Résonance Magnétique Nucléaire et de Résonance Paramagnétique Electronique (RMN-RPE-SM); Université de Brest (UBO); Institut National de la Recherche Agronomique (INRA); Institut des Sciences Chimiques de Rennes (ISCR); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS); Physiologie cellulaire et végétale (LPCV); Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut de Recherche Interdisciplinaire de Grenoble (IRIG); Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA); Iowa State University (ISU); 333709 to M.R.-G., Partner University Fund and the European Union Seventh Framework Program; CNRS and University of Rennes 1; UMR CNRS 6226, Chemical Sciences Institute of Rennes; Metabolic and Metabolomic Profiling; NMR-EPR-MS Technology (Brest, France); We thank the Chemical Sciences Institute of Rennes (UMR CNRS 6226) for DMSP synthesis, as well as the Metabolic and Metabolomic Profiling (P2M2, INRA Le Rheu, France) and the NMR-EPR-MS Technology (Brest, France) platforms for DMSP detection and quantification. J. Keller is thanked for his help during the salt treatment experiment, F. Nassur and T. Fontaine for the maintenance of the Spartina plant collection in the greenhouse. We thank D.K. Lee, S. Kim, D. Strong, S. Rinehart, E. Chow, R. Klinger and T. Columbus, who kindly helped us obtain American Spartina samples.; European Project: 333709,EC:FP7:PEOPLE,FP7-PEOPLE-2012-CIG,GENOMERGE(2013)
نبذة مختصرة : International audience ; DMSP (dimethylsulfoniopropionate) is an ecologically important sulfur metabolite commonly produced by marine algae and by some higher plant lineages, including the polyploid salt marsh genus Spartina (Poaceae). The molecular mechanisms and genes involved in the DMSP biosynthesis pathways are still unknown. In this study, we performed comparative analyses of DMSP amounts and molecular phylogenetic analyses to decipher the origin of DMSP in Spartina that represents one of the major source of terrestrial DMSP in coastal marshes. DMSP content was explored in 14 Spartina species using (1)H Nuclear Magnetic Resonance (NMR) spectroscopy and Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). Putative genes encoding the four enzymatic steps of the DMSP biosynthesis pathway in Spartina were examined and their evolutionary dynamics were studied. We found that the hexaploid lineage containing S. alterniflora, S. foliosa and S. maritima and their derived hybrids and allopolyploids are all able to produce DMSP, in contrast to species in the tetraploid clade. Thus, examination of DMSP synthesis in a phylogenetic context implicated a single origin of this physiological innovation, which occurred in the ancestor of the hexaploid Spartina lineage, 3-6MYA. Candidate genes specific to the Spartina DMSP biosynthesis pathway were also retrieved from Spartina transcriptomes, and provide a framework for future investigations to decipher the molecular mechanisms involved in this plant phenotypic novelty that has major ecological impacts in saltmarsh ecosystems.
No Comments.