Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Semantic regularization of electromagnetic inverse problems

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Peking University Beijing; Southeast University Jiangsu; Institut d'Électronique et des Technologies du numéRique (IETR); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - pôle Sciences et technologie; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ); his work was supported by the National Key Research and Development Program of China under Grant Nos. 2023YFB3811502, 2021YFA1401002. T.J.C. acknowledges the support from the National Natural Science Foundation of China under Grant No. 62288101. L.L. acknowledges the support from State Grid Corporation of China’s headquarters technology project “Research on non-contact wireless sensing mechanism and state identification method for distribution network” (5400-202355545A-3-2-ZN).
    • بيانات النشر:
      HAL CCSD
      Nature Publishing Group
    • الموضوع:
      2024
    • Collection:
      Université de Rennes 1: Publications scientifiques (HAL)
    • نبذة مختصرة :
      International audience ; Solving ill-posed inverse problems typically requires regularization based on prior knowledge. To date, only prior knowledge that is formulated mathematically (e.g., sparsity of the unknown) or implicitly learned from quantitative data can be used for regularization. Thereby, semantically formulated prior knowledge derived from human reasoning and recognition is excluded. Here, we introduce and demonstrate the concept of semantic regularization based on a pre-trained large language model to overcome this vexing limitation. We study the approach, first, numerically in a prototypical 2D inverse scattering problem, and, second, experimentally in 3D and 4D compressive microwave imaging problems based on programmable metasurfaces. We highlight that semantic regularization enables new forms of highly-sought privacy protection for applications like smart homes, touchless human-machine interaction and security screening: selected subjects in the scene can be concealed, or their actions and postures can be altered in the reconstruction by manipulating the semantic prior with suitable language-based control commands.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/38719933; hal-04596457; https://hal.science/hal-04596457; https://hal.science/hal-04596457/document; https://hal.science/hal-04596457/file/s41467-024-48115-5.pdf; PUBMED: 38719933
    • الرقم المعرف:
      10.1038/s41467-024-48115-5
    • الدخول الالكتروني :
      https://doi.org/10.1038/s41467-024-48115-5
      https://hal.science/hal-04596457
      https://hal.science/hal-04596457/document
      https://hal.science/hal-04596457/file/s41467-024-48115-5.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.D6740EC2