Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Towards autonomous shotcrete construction: semantic 3D reconstruction for concrete deposition using stereo vision and deep learning
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Schmidt, Patrick; Katsatos, Dimitrios; Alexiou, Dimitrios; Kostavelis, Ioannis; Giakoumis, Dimitrios; Tzovaras, Dimitrios; Nalpantidis, Lazaros
- المصدر:
Schmidt , P , Katsatos , D , Alexiou , D , Kostavelis , I , Giakoumis , D , Tzovaras , D & Nalpantidis , L 2024 , Towards autonomous shotcrete construction: semantic 3D reconstruction for concrete deposition using stereo vision and deep learning . in Proceedings of the 41 st International Symposium on Automation and Robotics in Construction . IEEE , pp. 896-903 , 41 st International Symposium on Automation and Robotics in Construction , Lille , France , 03/06/2024 . https://doi.org/10.22260/ISARC2024/0116
- الموضوع:
- نوع التسجيلة:
article in journal/newspaper
- اللغة:
English
- معلومة اضافية
- بيانات النشر:
IEEE
- الموضوع:
2024
- Collection:
Technical University of Denmark: DTU Orbit / Danmarks Tekniske Universitet
- نبذة مختصرة :
The adoption of autonomous systems is a foreseeable necessity in the construction sector due to work hazards and labor shortages. This paper presents a semantic 3D understanding module that creates 3D models of construction sites with highlighted regions of interest for shotcrete application. The approach uses YOLOv8m-seg and SiamMask for robust semantic segmentation together with RTAB-Map and InfiniTAM for visual odometry and 3D reconstruction. Our method is the first step towards a novel, autonomous robot for shotcrete spraying and finishing. The effectiveness of our approach is shown on a mock-up construction site and provides evidence for the applicability of robotic construction
- File Description:
application/pdf
- ISBN:
978-0-645-83221-1
0-645-83221-9
- Relation:
https://orbit.dtu.dk/en/publications/b857a018-52bd-4a50-94ca-c9d953e2e56d; urn:ISBN:978-0-6458322-1-1
- الرقم المعرف:
10.22260/ISARC2024/0116
- الدخول الالكتروني :
https://orbit.dtu.dk/en/publications/b857a018-52bd-4a50-94ca-c9d953e2e56d
https://doi.org/10.22260/ISARC2024/0116
https://backend.orbit.dtu.dk/ws/files/362704073/115_ISARC_2024_Paper_156.pdf
- Rights:
info:eu-repo/semantics/openAccess
- الرقم المعرف:
edsbas.D59FE97
No Comments.