Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Assessing Future Impacts of Climate Change on Streamflow within the Alabama River Basin

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Multidisciplinary Digital Publishing Institute
    • الموضوع:
      2021
    • Collection:
      MDPI Open Access Publishing
    • الموضوع:
    • نبذة مختصرة :
      Global climate change is expected to impact future precipitation and surface temperature trends and could alter local hydrologic systems. This study assessed the likely hydrologic responses and changes in streamflow due to future climate change within the Alabama River Basin (ARB) for the mid-21st century 2045 (“2030–2060”) and end-21st century 2075 (“2060–2090”). Using an integrated modeling approach, General Circulation Model (GCM) datasets; the Centre National de Recherches Météorologiques Climate Model 5 (CNRM-CM5), the Community Earth System Model, version 1–Biogeochemistry (CESM1- BGC.1), and the Hadley Centre Global Environment Model version 2 (HADGEM2-AO.1), under medium Representative Concentration Pathway (RCP) 4.5, and based on World Climate Research Program (WCRP)’s Couple Model Intercomparison Phase 5 (CMIP5), were assimilated into calibrated Soil and Water Assessment Tool (SWAT). Mann–Kendall and Theil Sen’s slope were used to assess the trends and magnitude of variability of the historical climate data used for setting up the model. The model calibration showed goodness of fit with minimum Nash–Sutcliffe Efficiency (NSE) coefficient values of 0.83 and Coefficient of Determination (R2) of 0.88 for the three gages within the ARB. Next, the research assessed changes in streamflow for the years 2045 and 2075 against that of the reference baseline year of 1980. The results indicate situations of likely increase and decrease in mean monthly streamflow discharge and increase in the frequency and variability in peak flows during the periods from the mid to end of the 21st century. Seasonally, monthly streamflow increases between 50% and 250% were found for spring and autumn months with decreases in summer months for 2045. Spring and summer months for 2075 resulted in increased monthly streamflow between 50% and 300%, while autumn and spring months experienced decreased streamflow. While the results are prone to inherent uncertainties in the downscaled GCM data used, the simulated dynamics in streamflow ...
    • File Description:
      application/pdf
    • Relation:
      https://dx.doi.org/10.3390/cli9040055
    • الرقم المعرف:
      10.3390/cli9040055
    • Rights:
      https://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.D4B13F15