Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Discriminating Seagrasses from Green Macroalgae in European Intertidal Areas Using High-Resolution Multispectral Drone Imagery

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut Des Substances et Organismes de la Mer - UR 2160 (ISOMER); Nantes Université - UFR des Sciences Pharmaceutiques et Biologiques (Nantes Univ - UFR Pharmacie); Nantes Université - pôle Santé; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST); Nantes Université - pôle Sciences et technologie; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie; Nantes Université (Nantes Univ); Centre for Environmental and Marine Studies Aveiro (CESAM); Universidade de Aveiro = University of Aveiro; Cnr-Istituto di Scienze Marine del Consiglio Nazionale delle Ricerche = Marine Science Institute (CNR-ISMAR); Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE); Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Bureau de Recherches Géologiques et Minières (BRGM)
    • بيانات النشر:
      CCSD
      MDPI
    • الموضوع:
      2024
    • Collection:
      Aix-Marseille Université: HAL
    • نبذة مختصرة :
      International audience ; Coastal areas support seagrass meadows, which offer crucial ecosystem services, including erosion control and carbon sequestration. However, these areas are increasingly impacted by human activities, leading to habitat fragmentation and seagrass decline. In situ surveys, traditionally performed to monitor these ecosystems, face limitations on temporal and spatial coverage, particularly in intertidal zones, prompting the addition of satellite data within monitoring programs. Yet, satellite remote sensing can be limited by too coarse spatial and/or spectral resolutions, making it difficult to discriminate seagrass from other macrophytes in highly heterogeneous meadows. Drone (unmanned aerial vehicle-UAV) images at a very high spatial resolution offer a promising solution to address challenges related to spatial heterogeneity and the intrapixel mixture. This study focuses on using drone acquisitions with a ten spectral band sensor similar to that onboard Sentinel-2 for mapping intertidal macrophytes at low tide (i.e., during a period of emersion) and effectively discriminating between seagrass and green macroalgae. Nine drone flights were conducted at two different altitudes (12 m and 120 m) across heterogeneous intertidal European habitats in France and Portugal, providing multispectral reflectance observation at very high spatial resolution (8 mm and 80 mm, respectively). Taking advantage of their extremely high spatial resolution, the low altitude flights were used to train a Neural Network classifier to discriminate five taxonomic classes of intertidal vegetation: Magnoliopsida (Seagrass), Chlorophyceae (Green macroalgae), Phaeophyceae (Brown algae), Rhodophyceae (Red macroalgae), and benthic Bacillariophyceae (Benthic diatoms), and validated using concomitant field measurements. Classification of drone imagery resulted in an overall accuracy of 94% across all sites and images, covering a total area of 467,000 m 2 . The model exhibited an accuracy of 96.4% in identifying seagrass. In ...
    • الرقم المعرف:
      10.3390/rs16234383
    • الدخول الالكتروني :
      https://hal.science/hal-04866022
      https://hal.science/hal-04866022v1/document
      https://hal.science/hal-04866022v1/file/remotesensing-16-04383-v3.pdf
      https://doi.org/10.3390/rs16234383
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.D4A3FD46