Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Reinforced optimal control

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2020
    • Collection:
      Weierstrass Institute for Applied Analysis and Stochastics publication server
    • نبذة مختصرة :
      Least squares Monte Carlo methods are a popular numerical approximation method for solving stochastic control problems. Based on dynamic programming, their key feature is the approximation of the conditional expectation of future rewards by linear least squares regression. Hence, the choice of basis functions is crucial for the accuracy of the method. Earlier work by some of us [Belomestny, Schoenmakers, Spokoiny, Zharkynbay, Commun. Math. Sci., 18(1):109?121, 2020] proposes to reinforce the basis functions in the case of optimal stopping problems by already computed value functions for later times, thereby considerably improving the accuracy with limited additional computational cost. We extend the reinforced regression method to a general class of stochastic control problems, while considerably improving the method?s efficiency, as demonstrated by substantial numerical examples as well as theoretical analysis.
    • Relation:
      https://doi.org/10.20347/WIAS.PREPRINT.2792; https://archive.wias-berlin.de/receive/wias_mods_00003940; https://archive.wias-berlin.de/servlets/MCRFileNodeServlet/wias_derivate_00003212/wias_preprints_2792.pdf; http://www.wias-berlin.de/publications/wias-publ/run.jsp?template=abstract&type=Preprint&year=2020&number=2792
    • الرقم المعرف:
      10.20347/WIAS.PREPRINT.2792
    • الدخول الالكتروني :
      https://doi.org/10.20347/WIAS.PREPRINT.2792
      https://archive.wias-berlin.de/receive/wias_mods_00003940
      https://archive.wias-berlin.de/servlets/MCRFileNodeServlet/wias_derivate_00003212/wias_preprints_2792.pdf
      http://www.wias-berlin.de/publications/wias-publ/run.jsp?template=abstract&type=Preprint&year=2020&number=2792
    • Rights:
      all rights reserved ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.D2033164