Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

On gravito-inertial surface waves

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut Fourier (IF); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA); Université Grenoble Alpes (UGA); Institut des Sciences de la Terre (ISTerre); Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA); European Project: 847433,THEIA
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      Université Savoie Mont Blanc: HAL
    • نبذة مختصرة :
      In geophysical environments, wave motions that are shaped by the action of gravity and global rotation bear the name of gravito-inertial waves. We present a geometrical description of gravito-inertial surface waves, which are low-frequency waves existing in the presence of a solid boundary. We consider an idealized fluid model for an incompressible fluid enclosed in a smooth compact three-dimensional domain, subject to a constant rotation vector. The fluid is also stratified in density under a constant Brunt-Väisälä frequency. The spectral problem is formulated in terms of the pressure, which satisfies a Poincar\'e equation within the domain, and a Kelvin equation on the boundary. The Poincar\'e equation is elliptic when the wave frequency is small enough, such that we can use the Dirichlet-to-Neumann operator to reduce the Kelvin equation to a pseudo-differential equation on the boundary. We find that the wave energy is concentrated on the boundary for large covectors, and can exhibit surface wave attractors for generic domains. In an ellipsoid, we show that these waves are square-integrable and reduce to spherical harmonics on the boundary.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2402.12992; info:eu-repo/grantAgreement//847433/EU/Topographic effects in planetary fluid cores, application to the Earth-Moon system/THEIA; ARXIV: 2402.12992
    • الدخول الالكتروني :
      https://hal.science/hal-04461197
      https://hal.science/hal-04461197v1/document
      https://hal.science/hal-04461197v1/file/main.pdf
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.D0FACAE9