Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticas
    • الموضوع:
      2002
    • Collection:
      Universidad Nacional de Colombia: Portal de Revistas UN
    • نبذة مختصرة :
      In this paper we prove that if M ⊏ ℝn , n = 8 or n = 9, is a n - 1 dimensional stable minimal complete cone such that its scalar curvature varies radially, then M must be either a hyperplane or a Clifford minimal cone. By Gauss' formula, the condition on the scalar curvature is equivalent to the condition that the function K1(m)2 + . + Kn-1 (m)2 varies radially. Here the Ki are the principal curvatures at m ∈ M. Under the same hypothesis, for M ⊏ ℝ10 we prove that if not only K1(m)2 + . + Kn-1 (m)2 varies radially but either K1(m)3 + . + Kn-1 (m)3 varies radially or K1(m)4 + . + Kn-1 (m)4 varies radially, then M must be either a hyperplane or a Clifford minimal cone.
    • File Description:
      application/pdf
    • Relation:
      https://revistas.unal.edu.co/index.php/recolma/article/view/33867/33940; https://revistas.unal.edu.co/index.php/recolma/article/view/33867
    • الدخول الالكتروني :
      https://revistas.unal.edu.co/index.php/recolma/article/view/33867
    • Rights:
      Derechos de autor 2002 Revista Colombiana de Matemáticas ; https://creativecommons.org/licenses/by/4.0
    • الرقم المعرف:
      edsbas.D0747C66