نبذة مختصرة : The two diametrically opposing outcomes after tissue damage are regeneration and fibrotic scarring. After injury, adult mammals predominantly induce fibrotic scarring, which most often leads to patient lethality. Fibrotic scarring is the deposition of excessive extracellular matrix that matures and hinders tissue function. The scarring response is mainly orchestrated by myofibroblasts, which arise only upon tissue damage, from various cellular origins, including tissue resident fibroblasts, endothelial cells and circulating blood cells. On the contrary, species like zebrafish, possess the remarkable capacity to regenerate their damaged tissues. After injury, instead of inducing a myofibroblast-mediated fibrogenic gene program, cells in these species undergo regenerative reprogramming at the transcriptional level to activate vital cellular processes needed for regeneration, including proliferation, dedifferentiation, and migration. Several pro-regenerative mechanisms have been identified to date. Most of them, if not all, are also important for tissue homeostasis and hence, are not injury specific. Therefore, the central aim of this study is to identify injury-specific mechanisms that not only induce regeneration, but also limit fibrotic scarring. To test the notion that fibrotic scarring limits regeneration, I first compared the scarring response in the regenerative zebrafish heart after cryoinjury with what is known in the non-regenerative adult mouse heart. I found that zebrafish display ~10-fold less myofibroblast differentiation compared to adult mouse after cardiac injury. With these findings, I hypothesized that zebrafish employ mechanisms to actively suppress scarring response. Using a novel comparative transcriptomic approach coupled with genetic loss-of-function analyses, I identified that Interleukin-6 (Il-6) cytokine family-mediated Stat3 is one such pro-regenerative pathway in zebrafish. Il-6 cytokine family consists of Il-6, Interleukin-11 (Il-11), Ciliary neurotrophic factor, Leukemia inhibitory ...
No Comments.