Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Distributed Weighted Possibilistic c-Means Algorithm for Clustering Incomplete Big Sensor Data

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Zhang, Qingchen; Chen, Zhikui
  • المصدر:
    International Journal of Distributed Sensor Networks ; volume 10, issue 5, page 430814 ; ISSN 1550-1477 1550-1477
  • نوع التسجيلة:
    article in journal/newspaper
  • اللغة:
    English
  • معلومة اضافية
    • Contributors:
      National Natural Science Foundation of China
    • بيانات النشر:
      SAGE Publications
    • الموضوع:
      2014
    • نبذة مختصرة :
      Possibilistic c-means clustering algorithm (PCM) has emerged as an important technique for pattern recognition and data analysis. Owning to the existence of many missing values, PCM is difficult to produce a good clustering result in real time. The paper proposes a distributed weighted possibillistic c-means clustering algorithm (DWPCM), which works in three steps. First the paper applies the partial distance strategy to PCM (PDPCM) for calculating the distance between any two objects in the incomplete data set. Further, a weighted PDPCM algorithm (WPCM) is designed to reduce the corruption of missing values by assigning low weight values to incomplete data objects. Finally, to improve the cluster speed of WPCM, the cloud computing technology is used to optimize the WPCM algorithm by designing the distributed weighted possibilistic c-means clustering algorithm (DWPCM) based on MapReduce. The experimental results demonstrate that the proposed algorithms can produce an appropriate partition efficiently for incomplete big sensor data.
    • الرقم المعرف:
      10.1155/2014/430814
    • الدخول الالكتروني :
      http://dx.doi.org/10.1155/2014/430814
      http://journals.sagepub.com/doi/pdf/10.1155/2014/430814
      http://journals.sagepub.com/doi/full-xml/10.1155/2014/430814
    • Rights:
      http://journals.sagepub.com/page/policies/text-and-data-mining-license
    • الرقم المعرف:
      edsbas.D03AEF5D