Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Confinement-induced drift in Marangoni-driven transport of surfactant: a Lagrangian perspective

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      University of Manchester Manchester; Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS); EPSRC grant EP/T030739/1
    • بيانات النشر:
      HAL CCSD
      Cambridge University Press (CUP)
    • الموضوع:
      2024
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      International audience ; Successive drops of coloured ink mixed with surfactant are deposited onto a thin film of water to create marbling patterns in the Japanese art technique of Suminagashi. To understand the physics behind this and other applications where surfactant transports adsorbed passive matter at gas–liquid interfaces, we investigate the Lagrangian trajectories of material particles on the surface of a thin film of a confined viscous liquid under Marangoni-driven spreading by an insoluble surfactant. We study a model problem in which several deposits of exogenous surfactant simultaneously spread on a bounded rectangular surface containing a pre-existing endogenous surfactant. We derive Eulerian and Lagrangian formulations of the equations governing the Marangoni-driven surface flow. Both descriptions show how confinement can induce drift and flow reversal during spreading. The Lagrangian formulation captures trajectories without the need to calculate surfactant concentrations; however, concentrations can still be inferred from the Jacobian of the map from initial to current particle position. We explore a link between thin-film surfactant dynamics and optimal transport theory to find the approximate equilibrium locations of material particles for any given initial condition by solving a Monge–Ampère equation. We find that as the endogenous surfactant concentration $\delta$ vanishes, the equilibrium shapes of deposits using the Monge–Ampère approximation approach polygons with corners curving in a self-similar manner over lengths scaling as $\delta ^{1/2}$ . We explore how Suminagashi patterns may be produced by using computationally efficient successive solutions of the Monge–Ampère equation.
    • Relation:
      hal-04584295; https://hal.science/hal-04584295; https://hal.science/hal-04584295/document; https://hal.science/hal-04584295/file/2024_Mcnair-Jensen-Landel_JFM.pdf
    • الرقم المعرف:
      10.1017/jfm.2024.334
    • الدخول الالكتروني :
      https://hal.science/hal-04584295
      https://hal.science/hal-04584295/document
      https://hal.science/hal-04584295/file/2024_Mcnair-Jensen-Landel_JFM.pdf
      https://doi.org/10.1017/jfm.2024.334
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.CFBB1587