Contributors: Génétique du Développement humain - Human developmental genetics; Institut Pasteur Paris (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Institut Cochin (IC UM3 (UMR 8104 / U1016)); Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Universidad San Sebastian; Epigénomique, Prolifération et Identité Cellulaire - Epigenomics, Proliferation and the Identity of Cells (EPIC); Cellules Souches et Développement / Stem Cells and Development; Hub Bioinformatique et Biostatistique - Bioinformatics and Biostatistics HUB; Institut Pasteur Paris (IP)-Université Paris Cité (UPCité); Mahidol University Bangkok; Jaslok Hospital and Research Centre Mumbaï, India; University College of London London (UCL); Institut du Cerveau = Paris Brain Institute (ICM); Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière AP-HP; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); We thank Dr. Mark Jobling and Dr. Yahya Khubrani for helping us with haplogroup identification. We thank Pascal Campagne from the Institut Pasteur Bioinformatics and Biostatistics Hub for his help with the statistical analysis. We thank Florence Deknuydt and the CYTO-ICAN platform from the ICAN Institute in Paris, France. We also thank Dr. Deepak Modi (NIRRH, India), Dr. Firuza Parikh (JHRC, India), and themembers of the families who voluntarily donated the blood sample for our research work. This research was supported in part by grants from Agence Nationale de la Recherche (ANR-10-LABX-73 REVIVE, ANR-19-CE14-0022, ANR-19-CE14-0012, ANR-20-CE14-0007, ANR-23-CE14-0061, and ANR-23-CE14-0068) to A.B. and K.M.; Supported (in part) byESPE Visiting Professorship, an unrestricted grant from Pfizer to K.M.; Powered@NLHPC: the supercomputing infrastructure of the NLHPC (CCSS210001), and ANID-BASAL FB210008 to C.F.L.; Wellcome Trust (209328/Z/17/Z) and National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (IS-BRC-1215-20012) to F.B. and J.C.A.; and programs “Investissements d’avenir” ANR-10- IAIHU-06 and ANR11-INBS-0011 – NeurATRIS: Translational research Infrastructure for Biotherapies in Neurosciences to S.B. and D.B. For the purpose of open-access, the author has applied a CC-BY public copyright license to any author-accepted manuscript (AAM) version arising from this submission (D.H., C.E., J.B.-T., M.E., A.B., K.M., and J.C.A.).; ANR-19-CE14-0022,SexDiff,Régulation de la détermination du sexe et de la différenciation ovarienne : implications dans les troubles du développement sexuel(2019); ANR-19-CE14-0012,RNA-SEX,Fonction de l'ARN hélicase dans la détermination du sexe chez les vertébrés et les troubles du développement du sexe chez l'homme (DSD)(2019); ANR-20-CE14-0007,Goldilocks,Analyse intégrée du rôle du facteur de transcription SF-1 / NR5A1 et de ses gènes cibles dépendants du dosage dans la fonction gonadique et les troubles du développement sexuel (DSD)(2020); ANR-23-CE14-0061,SexGenReg,La détermination du sexe comme modèle pour comprendre la régulation génétique du développement(2023); ANR-23-CE14-0068,NUC-OVAR,Le rôle des récepteurs nucléaires dans la détermination/le développement des ovaires et les pathologies humaines associées(2023); ANR-10-LABX-0073,REVIVE,Stem Cells in Regenerative Biology and Medicine(2010)
نبذة مختصرة : International audience ; The Y-linked SRY gene initiates mammalian testis-determination. However, how the expression of SRY is regulated remains elusive. Here, we demonstrate that a conserved steroidogenic factor-1 (SF-1)/NR5A1 binding enhancer is required for appropriate SRY expression to initiate testis-determination in humans. Comparative sequence analysis of SRY 5’ regions in mammals identified an evolutionary conserved SF-1/NR5A1-binding motif within a 250 bp region of open chromatin located 5 kilobases upstream of the SRY transcription start site. Genomic analysis of 46,XY individuals with disrupted testis-determination, including a large multigenerational family, identified unique single-base substitutions of highly conserved residues within the SF-1/NR5A1-binding element. In silico modelling and in vitro assays demonstrate the enhancer properties of the NR5A1 motif. Deletion of this hemizygous element by genome-editing, in a novel in vitro cellular model recapitulating human Sertoli cell formation, resulted in a significant reduction in expression of SRY . Therefore, human NR5A1 acts as a regulatory switch between testis and ovary development by upregulating SRY expression, a role that may predate the eutherian radiation. We show that disruption of an enhancer can phenocopy variants in the coding regions of SRY that cause human testis dysgenesis. Since disease causing variants in enhancers are currently rare, the regulation of gene expression in testis-determination offers a paradigm to define enhancer activity in a key developmental process.
No Comments.