Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Theory of plasmonic properties of hyper-doped silicon nanostructures

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Nano-Optique et Nanomatériaux pour l'optique (CEMES-NeO); Centre d'élaboration de matériaux et d'études structurales (CEMES); Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT); Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS); ANR-18-CE09-0034,DONNA,Dopage à l'échelle nano(2018)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2019
    • Collection:
      HAL Université Côte d'Azur
    • نبذة مختصرة :
      International audience ; The presence of a Localized Surface Plasmon Resonance in doped semiconductor nanostructures opens a new field for plasmonics and metasurfaces. Semiconductor nanostructures can be easily processed, have weak dissipation losses, and the plasmon resonance can be tuned from the mid- to the near-infrared spectral range by changing the dopant concentration (in complement to the constituent material, the size and shape of the nanostructure). We present in this paper an extension of the Green Dyadic Method applied to the case of doped silicon nanostructures of arbitrary shape on a planar silica substrate. The method is used to compute both far- and near-field optical properties, such as the extinction efficiency and the electromagnetic near-field intensity inside and around any doped silicon nanostructure, respectively. This theoretical approach provides an important tool for active dopant characterization in doped semiconductor nanostructures, for near-field imaging of complex nanoantennas produced by electron beam lithography, and for the definition of doped semiconductor-based metasurfaces.
    • Relation:
      hal-02303712; https://hal.science/hal-02303712; https://hal.science/hal-02303712/document; https://hal.science/hal-02303712/file/elsarticle_hyper_dop_version_finale.pdf
    • الرقم المعرف:
      10.1016/j.optcom.2019.124336
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.CDC7DC20