Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

INEX Tweet Contextualization Task: Evaluation, Results and Lesson Learned

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire des Sciences de l'Information et des Systèmes (LSIS); Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS); Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI); Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919); Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE); Systèmes d’Informations Généralisées (IRIT-SIG); Institut de recherche en informatique de Toulouse (IRIT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI); Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); Avignon Université (AU); Université Paris-Saclay; Université Paris-Sud - Paris 11 (UP11)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2016
    • Collection:
      Université de Toulon: HAL
    • نبذة مختصرة :
      International audience ; Microblogging platforms such as Twitter are increasingly used for on-line client and market analysis. This motivated the proposal of a new track at CLEF INEX lab of Tweet Contextualization. The objective of this task was to help a user to understand a tweet by providing him with a short explanatory summary (500 words). This summary should be built automatically using resources like Wikipedia and generated by extracting relevant passages and aggregating them into a coherent summary. Running for four years, results show that the best systems combine NLP techniques with more traditional methods. More precisely the best performing systems combine passage retrieval, sentence segmentation and scoring, named entity recognition, text part-of-speech (POS) analysis, anaphora detection, diversity content measure as well as sentence reordering. This paper provides a full summary report on the four-year long task. While yearly overviews focused on system results, in this paper we provide a detailed report on the approaches proposed by the participants and which can be considered as the state of the art for this task. As an important result from the 4 years competition, we also describe the open access resources that have been built and collected. The evaluation measures for automatic summarization designed in DUC or MUC were not appropriate to evaluate tweet contextualization, we explain why and depict in detailed the LogSim measure used to evaluate informativeness of produced contexts or summaries. Finally, we also mention the lessons we learned and that it is worth considering when designing a task.
    • Relation:
      hal-01479297; https://amu.hal.science/hal-01479297; https://amu.hal.science/hal-01479297/document; https://amu.hal.science/hal-01479297/file/bellot_16939.pdf
    • الرقم المعرف:
      10.1016/j.ipm.2016.03.002
    • Rights:
      http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.CD97AABF