نبذة مختصرة : Environmental concerns, resource depletion, energy security, technological advancements, and global policies are just a few of the variables influencing the global energy perspective. In the case of technological advancement, lithium batteries play a key role in the development of a more sustainable energy infrastructure. The high energy density and long lifespan of lithium batteries make them ideal for usage in a broad range of applications, such as portable electronics, electric vehicles, and grid-scale energy storage for renewable energy sources. However, there are certain possible concerns regarding the safe operation and performance of lithium batteries, most of which are associated with the temperature sensitivity of lithium batteries. Hence, battery thermal management systems are an essential component of a battery package for regulating the temperature level in lithium batteries to avoid the aging process, poor performance, and safety issues. Many studies have been conducted to develop battery thermal management systems with improved cooling performance. Within this framework, Paper A in this licentiate thesis considers how the design of a lithium battery cell may be improved to reduce the thermal load on the thermal management system. An analytical model based on the integral transform technique is developed to accurately and efficiently predict the thermal behavior of a cylindrical lithium battery cell. Following model validation, the thermal behavior of cylindrical lithium-ion battery cells with different jelly-roll layers and can sizes are compared. The results demonstrate that 21700 cylindrical battery cells outperform other types of cylindrical battery cells in terms of thermal performance. Furthermore, the thermally optimal thicknesses for positive active material, negative active material, positive current collector, and negative current collector are 180, 34, 21, and 20 um, respectively. After learning about design considerations to reduce thermal issues in lithium-ion battery cells and ...
No Comments.