Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Linear dynamics of multiplication and composition operators on Hol(D)

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Analyse et de Mathématiques Appliquées (LAMA); Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel; ANR-10-LABX-0058,Bézout,Models and algorithms: from the discrete to the continuous(2010)
    • بيانات النشر:
      HAL CCSD
      Springer Verlag
    • الموضوع:
      2024
    • نبذة مختصرة :
      International audience ; We give a complete description of the linear dynamics of multiplication Mm and composition operators Cφ on the space Hol(D) of all holomorphic maps on the unit disc. We show that Mm is never supercyclic, and cyclic if and only if the map m is injective. For composition operators, we prove that if φ has a fixed point in D, then Cφ is either not cyclic, or cyclic but not supercyclic on Hol(D). On the other hand, if φ does not have any fixed point in the unit disc, then Cφ is hypercyclic on Hol(D). We provide explicit expressions of cyclic and hypercyclic vectors. Finally, we make some observations on weighted composition operators on Hol(D).
    • الرقم المعرف:
      10.1007/s11785-024-01615-0
    • الدخول الالكتروني :
      https://doi.org/10.1007/s11785-024-01615-0
      https://hal.science/hal-04617436
      https://hal.science/hal-04617436v2/document
      https://hal.science/hal-04617436v2/file/Cyclicit%C3%A9-Oger-v2.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.CC6F5141