Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Estimation of conditional mixture Weibull distribution with right-censored data using neural network for time-to-event analysis

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Argumentation, Décision, Raisonnement, Incertitude et Apprentissage (IRIT-ADRIA); Institut de recherche en informatique de Toulouse (IRIT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI); Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); Algorithmes Parallèles et Optimisation (IRIT-APO)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2020
    • Collection:
      Université Toulouse 2 - Jean Jaurès: HAL
    • نبذة مختصرة :
      In this paper, we consider survival analysis with right-censored data which is a common situation in predictive maintenance and health field. We propose a model based on the estimation of two-parameter Weibull distribution conditionally to the features. To achieve this result, we describe a neural network architecture and the associated loss functions that takes into account the right-censored data. We extend the approach to a finite mixture of two-parameter Weibull distributions. We first validate that our model is able to precisely estimate the right parameters of the conditional Weibull distribution on synthetic datasets. In numerical experiments on two real-word datasets (METABRIC and SEER), our model outperforms the state-of-the-art methods. We also demonstrate that our approach can consider any survival time horizon.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2002.09358; hal-02483979; https://hal.science/hal-02483979; https://hal.science/hal-02483979/document; https://hal.science/hal-02483979/file/main.pdf; ARXIV: 2002.09358
    • الدخول الالكتروني :
      https://hal.science/hal-02483979
      https://hal.science/hal-02483979/document
      https://hal.science/hal-02483979/file/main.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.CA2F6FDF