Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Density of automorphic points in deformation rings of polarized global Galois representations

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Westfälische Wilhelms-Universität Münster = University of Münster (WWU); Centre de Mathématiques Laurent Schwartz (CMLS); École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS); Laboratoire de Mathématiques d'Orsay (LMO); Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS); ANR-18-CE40-0026,CLap-CLap,Correspondance de Langlands p-adique : une approche constructive et algorithmique(2018)
    • بيانات النشر:
      HAL CCSD
      Duke University Press
    • الموضوع:
      2022
    • نبذة مختصرة :
      International audience ; Conjecturally, the Galois representations that are attached to essentially self-dual regular algebraic cuspidal automorphic representations are Zariski-dense in a polarized Galois deformation ring. We prove new results in this direction in the context of automorphic forms on definite unitary groups over totally real fields. This generalizes the infinite fern argument of Gouvêa–Mazur and Chenevier and relies on the construction of nonclassical p-adic automorphic forms and the computation of the tangent space of the space of trianguline Galois representations. This boils down to a surprising statement about the linear envelope of intersections of Borel subalgebras.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1811.09116; ARXIV: 1811.09116
    • الرقم المعرف:
      10.1215/00127094-2021-0080
    • الدخول الالكتروني :
      https://hal.science/hal-04455776
      https://hal.science/hal-04455776v1/document
      https://hal.science/hal-04455776v1/file/1811.09116.pdf
      https://doi.org/10.1215/00127094-2021-0080
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.C9F3081B